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This	document	provides	guidance	and	best	practices	for	designing	environments	that	leverage	the	capabilities	of	VMware	NSX-T®.	It	is	targeted	at	virtualization	and	network	architects	interested	in	deploying	NSX	Data	Center	solutions.	1.1						How	to	Use	This	Document	and	Provide	Feedback	This	document	is	organized	into	several	chapters.	Chapter	2	to	6	explain	the	architectural	building	blocks	of	NSX-T	as	a	full	stack	solution,	providing	a	detail	functioning	of	NSX-T	components,	features	and	scope.		They	also	describe	components	and	functionality	utilized
for	security	use	cases.	These	chapters	lay	the	groundwork	to	help	understand	and	implement	the	design	guidance	described	in	the	design	chapter.	The	design	chapter	(Chapter	7)	examines	detailed	use	cases	of	network	virtualization	and	recommendations	of	either	best	practices	or	leading	practices	based	on	the	type	of	use	case	or	design	form	factor.	It	offers	guidance	for	a	variety	of	factors	including	physical	infrastructure	considerations,	compute	node	requirements,	and	variably	sized	environments	from	small	to	enterprise	scale.	This	version	of	design	guide
we	have	updated	our	chapter	on	performance.	This	chapter	was	introduced	by	a	popular	request	from	our	loyal	customer	base	in	version	2.0	of	this	document	and	aims	at	clarifying	the	myths	vs	facts	on	NSX-T	based	SDN.	This	document	does	not	cover	installation,	and	operational	monitoring	and	troubleshooting.	For	further	details,	review	the	complete	NSX-T	installation	and	administration	guides.	A	list	of	additional	resources,	specific	API	examples	and	guidance	are	included	at	the	end	of	this	document	under	multiple	appendixes.	Finally	starting	with	this
design	guide,	readers	are	encouraged	to	send	a	feedback	to	NSXDesignFeedback_AT_groups_vmware_com	(convert	to	email	format).	1.2						Networking	and	Security	Today	In	the	digital	transformation	era,	organizations	are	increasingly	building	custom	applications	to	drive	core	business	and	gain	competitive	advantages.	The	speed	with	which	development	teams	deliver	new	applications	and	capabilities	directly	impacts	the	organization’s	success	and	bottom	line.	This	exerts	increasing	pressure	on	organizations	to	innovate	quickly	and	makes	developers
central	to	this	critical	mission.	As	a	result,	the	way	developers	create	apps,	and	the	way	IT	provides	services	for	those	apps,	are	evolving.	Application	Proliferation	With	applications	quickly	emerging	as	the	new	business	model,	developers	are	under	immense	pressure	to	deliver	apps	in	a	record	time.	This	increasing	need	to	deliver	more	apps	in	a	less	time	can	drive	developers	to	use	public	clouds	or	open	source	technologies.	These	solutions	allow	them	to	write	and	provision	apps	in	a	fraction	of	the	time	required	with	traditional	methods.	Heterogeneity
Application	proliferation	has	given	rise	to	heterogeneous	environments,	with	application	workloads	being	run	inside	VMs,	containers,	clouds,	and	bare	metal	servers.	IT	departments	must	maintain	governance,	security,	and	visibility	for	application	workloads	regardless	of	whether	they	reside	on	premises,	in	public	clouds,	or	in	clouds	managed	by	third-parties.	Cloud-centric	Architectures	Cloud-centric	architectures	and	approaches	to	building	and	managing	applications	are	increasingly	common	because	of	their	efficient	development	environments	and	fast
delivery	of	applications.	These	cloud	architectures	can	put	pressure	on	networking	and	security	infrastructure	to	integrate	with	private	and	public	clouds.	Logical	networking	and	security	must	be	highly	extensible	to	adapt	and	keep	pace	with	ongoing	change.	Against	this	backdrop	of	increasing	application	needs,	greater	heterogeneity,	and	the	complexity	of	environments,	IT	must	still	protect	applications	and	data	while	addressing	the	reality	of	an	attack	surface	that	is	continuously	expanding.	1.3						NSX-T	Architecture	Value	and	Scope	VMware	NSX-T	is
designed	to	address	application	frameworks	and	architectures	that	have	heterogeneous	endpoints	and	technology	stacks.	In	addition	to	vSphere,	these	environments	may	include	other	hypervisors,	containers,	bare	metal	operating	systems,	and	public	clouds.	NSX-T	allows	IT	and	development	teams	to	choose	the	technologies	best	suited	for	their	particular	applications.	NSX-T	is	also	designed	for	management,	operations,	and	consumption	by	development	organizations	in	addition	to	IT.	Figure	1‑1:	NSX-T	Anywhere	Architecture	The	NSX-T	architecture	is
designed	around	four	fundamental	attributes.	Figure	1‑1:	NSX-T	Anywhere	Architecture	depicts	the	universality	of	those	attributes	that	spans	from	any	site,	to	any	cloud,	and	to	any	endpoint	device.	This	enables	greater	decoupling,	not	just	at	the	infrastructure	level	(e.g.,	hardware,	hypervisor),	but	also	at	the	public	cloud	(e.g.,	AWS,	Azure)	and	container	level	(e.g.,	K8,	Pivotal);	all	while	maintaining	the	four	key	attributes	of	platform	implemented	across	the	domains.	NSX-T	architectural	value	and	characteristics	of	NSX-T	architecture	include:	Policy	and
Consistency:	Allows	policy	definition	once	and	realizable	end	state	via	RESTful	API,	addressing	requirements	of	today’s	automated	environments.	NSX-T	maintains	unique	and	multiple	inventories	and	controls	to	enumerate	desired	outcomes	across	diverse	domains.	Networking	and	Connectivity:	Allows	consistent	logical	switching	and	distributed	routing	with	multiple	vSphere	and	KVM	nodes,	without	being	tied	to	compute	manager/domain.	The	connectivity	is	further	extended	across	containers	and	clouds	via	domain	specific	implementation	while	still
providing	connectivity	across	heterogeneous	endpoints.	Security	and	Services:	Allows	a	unified	security	policy	model	as	with	networking	connectivity.	This	enables	implementation	of	services	such	as	load	balancer,	Edge	(Gateway)	Firewall,	Distributed	Firewall,	and	Network	Address	Translation	cross	multiple	compute	domains.	Providing	consistent	security	between	VMs	and	container	workloads	is	essential	to	assuring	the	integrity	of	the	overall	framework	set	forth	by	security	operations.	Visibility:	Allows	consistent	monitoring,	metric	collection,	and	flow
tracing	via	a	common	toolset	across	compute	domains.	Visibility	is	essential	for	operationalizing	mixed	workloads	–	VM	and	container-centric	–typically	both	have	drastically	different	tools	for	completing	similar	tasks.	These	attributes	enable	the	heterogeneity,	app-alignment,	and	extensibility	required	to	support	diverse	requirements.	Additionally,	NSX-T	supports	DPDK	libraries	that	offer	line-rate	stateful	services.	Heterogeneity	In	order	to	meet	the	needs	of	heterogeneous	environments,	a	fundamental	requirement	of	NSX-T	is	to	be	compute-manager
agnostic.	As	this	approach	mandates	support	for	multi-hypervisor	and/or	multi-workloads,	a	single	NSX	manager’s	manageability	domain	can	span	multiple	vCenters.	When	designing	the	management	plane,	control	plane,	and	data	plane	components	of	NSX-T,	special	considerations	were	taken	to	enable	flexibility,	scalability,	and	performance.	The	management	plane	was	designed	to	be	independent	of	any	compute	manager,	including	vSphere.	The	VMware	NSX-T®	Manager™	is	fully	independent;	management	of	the	NSX	based	network	functions	are	accesses
directly	–	either	programmatically	or	through	the	GUI.	The	control	plane	architecture	is	separated	into	two	components	–	a	centralized	cluster	and	an	endpoint-specific	local	component.	This	separation	allows	the	control	plane	to	scale	as	the	localized	implementation	–	both	data	plane	implementation	and	security	enforcement	–	is	more	efficient	and	allows	for	heterogeneous	environments.	The	data	plane	was	designed	to	be	normalized	across	various	environments.	NSX-T	introduces	a	host	switch	that	normalizes	connectivity	among	various	compute	domains,
including	multiple	VMware	vCenter®	instances,	KVM,	containers,	and	other	off	premises	or	cloud	implementations.	This	switch	is	referred	as	N-VDS.		The	functionality	of	the	N-VDS	switch	was	fully	implemented	in	the	ESXi	VDS	7.0,	which	allows	ESXi	customers	to	take	advantage	of	full	NSX-T	functionality	without	having	to	change	VDS.	Regardless	of	implementation,	data	plane	connectivity	is	normalized	across	all	platforms,	allowing	for	a	consistent	experience.	App-aligned	NSX-T	was	built	with	the	application	as	the	key	construct.	Regardless	of	whether	the
app	was	built	in	a	traditional	monolithic	model	or	developed	in	a	newer	microservices	application	framework,	NSX-T	treats	networking	and	security	consistently.	This	consistency	extends	across	containers	and	multi-hypervisors	on	premises,	then	further	into	the	public	cloud.	This	functionality	is	first	available	for	Amazon	Web	Services	(AWS),	Microsoft	Azure	and	will	extend	to	other	clouds	as	well	on	premises	connectivity	solutions.	In	turn	enabling	developers	to	focus	on	the	platform	that	provides	the	most	benefit	while	providing	IT	operational	consistency
across	networking	and	security	platforms.	Containers	and	Cloud	Native	Application	Integrations	with	NSX-T	In	an	age	where	a	new	application	is	directly	tied	to	business	gains,	delays	in	application	deployment	translates	to	lost	revenue	or	business	opportunity.	The	current	era	of	digital	transformation	challenges	IT	in	addressing	directives	to	normalize	security	of	applications	and	data,	increase	speed	of	delivery,	and	improve	application	availability.	IT	administrators	realize	that	a	new	approach	must	be	taken	to	support	business	needs	and	meet	timelines.
Architecturally	solving	the	problem	by	specifically	defining	connectivity,	security,	and	policy	as	a	part	of	application	lifecycle	is	essential.	Programmatic	and	automatic	creation	of	network	and	switching	segments	based	on	application	driven	infrastructure	is	the	only	way	to	meet	the	requirements	of	these	newer	architectures.	NSX-T	is	designed	to	address	the	needs	of	these	emerging	application	frameworks	and	architectures	with	heterogeneous	endpoints	and	technology	stacks.	NSX	allows	IT	and	development	teams	to	choose	the	technologies	best	suited	for
their	particular	applications	or	use	case	without	compromising	consistent	security	and	operations.	NSX	provides	a	common	framework	to	manage	and	increase	visibility	of	environments	that	contain	everything	from	physical	servers	to	VMs	and	containers.	As	developers	embrace	newer	technologies	like	containers	and	the	percentage	of	workloads	running	in	public	clouds	increases,	network	virtualization	must	expand	to	offer	a	full	range	of	networking	and	security	services	(e.g.,	LB,	NAT,	DFW,	etc.)	native	in	these	environments.	NSX	Container	solutions
provide	networking,	security,	visibility,	and	Load	Balancing	services	for	container-based	applications	based	on	Kubernetes	(Openshift	and	Tanzu)	as	well	as	managed	Kubernetes	offerings	running	in	the	public	cloud	(Amazon’s	Elastic	Kubernetes	Service	–	EKS,	Amazon	Kubernetes	Service	–	AKS,	and	Google	Kubernetes	Engine	GKE).	The	NSX	Portfolio	also	consists	of	solutions	like	“NSX	Container	Networking	with	Project	Antrea”	and	Tanzu	Service	Mesh	which	help	extend	NSX	to	IaaS	and	CaaS	platforms	like	Managed	Public	Clouds	or	Far	Edge	Scenarios
where	there	is	no	underlying	NSX	dataplane.	Figure	1‑2:	Programmatic	Integration	with	Various	PaaS	and	CaaS	The	NSX-T	Container	Plug-in	(NCP)	is	built	to	provide	direct	integration	with	a	number	of	environments	where	container-based	applications	could	reside.	The	NSX	Container	Plugin	leverages	the	Container	Network	Interface	(CNI)	to	interface	with	the	container	and	allows	NSX-T	to	orchestrate	networking,	policy	and	load	balancing	for	containers.	Container	orchestrators,	such	as	Kubernetes	(i.e.,	k8s)	are	ideal	for	NSX-T	integration.	Solutions	that
contain	enterprise	distributions	of	k8s,	notably	Tanzu	and	RedHat	Open	Shift	support	solutions	with	NSX-T.	Additionally,	NSX-T	supports	integration	with	PaaS	solutions	like	Pivotal	Cloud	Foundry.	Please	refer	Reference	Design	Guide	for	PAS	and	PKS	with	VMware	NSX-T	Data	Center	for	detail	guidance.	Multi-Cloud	Architecture	and	NSX-T	When	extended	to	workloads	in	public	cloud,	NSX-T	provides	a	single	pane	of	glass	for	networking	and	security	policy	management	across	private	and	multiple	public	clouds.	NSX-T	also	provides	full	topology	control	over
switching	and	routing	in	overlay	mode	and	abstracts	the	limitations	of	underlying	cloud	provider	networks.	From	the	visibility	perspective,	it	provides	a	view	into	public	cloud	inventory	such	as	VMs	(e.g.,	instances)	and	networks	(e.g.,	VPCs,	VNETs).	Since	the	same	NSX-T	deployment	is	managing	workloads	in	public	cloud,	the	entire	infrastructure	can	be	consistently	operated	on	day	two.	Figure	1‑3:	Multi-cloud	Architecture	with	NSX-T	The	Cloud	Service	Manager	provides	inventory	view	across	multiple	clouds,	multiple	Public	Cloud	Accounts,	and	Multiple
VPCs/VNETs	across	multiple	regions.	The	NSX-T	Manager	deployed	in	Datacenter	provides	policy	consistency	across	multiple	cloud	deployments,	including	a	mix	of	public	and	private	clouds.	The	Public	Cloud	Gateway	provides	a	localized	NSX	control	plane	in	each	Public	Cloud	and	can	be	shared	between	multiple	VPCs/VNETs.	Starting	with	NSX-T	2.5	release,	NSX	Cloud	supports	two	modes	of	operations	-	The	Native	Cloud	Enforced	Mode	and	NSX	Enforced	Mode.	When	using	the	Native	Cloud	Enforced	mode,	NSX	Policies	are	translated	to	Native	Cloud
Constructs	such	as	Security	Groups	(in	AWS)	or	combination	of	Network	Security	Group/Application	Security	Groups	(in	Azure).	In	NSX	Enforced	Mode	(which	was	the	only	mode	available	in	NSX-T	2.4	and	prior),	the	NSX	policies	are	enforced	using	NSX	Tools	which	is	deployed	in	each	Cloud	instance.	Mix	mode	deployment	is	possible,	and	the	mode	is	chosen	at	a	VPC/VNET	level.	In	other	words,	a	single	pair	of	Public	Cloud	Gateways	can	manage	few	VPCs	in	NSX	Enforced	mode	and	others	in	Native	Cloud	Enforced	mode.	This	provides	customers	with
greatest	choice	of	deployment	mode	while	reducing	the	footprint	in	Public	Cloud,	thus	saving	operational	costs	while	maximizing	cross-cloud	consistency.	Additionally,	NSX-T	2.5	onward,	native	cloud	service	endpoints	(RDS,	ELB,	Azure	LB,	etc.)	are	discovered	automatically	and	can	be	used	in	NSX-T	DFW	policy.	Customer	does	not	need	to	find	the	endpoint	IPs	manually	while	creating	these	policies.	Architecturally,	the	Public	Cloud	Gateway	is	responsible	for	discovery	of	cloud	VMs/service	endpoints	as	well	as	the	realization	of	policies	in	both	modes	of
operation.	In	Native	Cloud	Enforced	Mode,	NSX	Provides	common	management	plane	for	configuring	rich	micro-segmentation	policies	across	multiple	public	clouds.	When	using	NSX	Enforced	Mode,	the	Public	Cloud	Gateway	also	provides	services	such	as	VPN,	NAT	and	Edge	Firewall,	similar	to	an	on-premises	NSX-T	Edge.	NSX	Enforced	mode	further	allows	each	cloud	based	VM	instance	additional	distributed	data	plane	benefits	including	logical	switching,	logical	routing	and	monitoring	features	such	as	syslog,	port-mirroring,	IPFIX,	etc	-all	the	while
allowing	customers	to	follow	cloud	providers	best	practices	for	designing	network	topologies.	For	further	information	on	how	NSX-T	is	benefiting	in	cloud	workload	visit	NSXCLOUD	and	explore.	Extensible	The	key	architectural	tenets	of	heterogeneity	and	app-alignment	are	inherently	properties	of	extensibility,	but	full	extensibility	requires	more.	Extensibility	also	means	the	ability	to	support	multi-tenant	and	domain	environments	along	with	integration	into	the	DevOps	workflow.	NSX-T	reproduces	the	complete	set	of	networking	services	(e.g.,	switching,
routing,	firewalling,	load	balancing,	QoS)	in	software.	These	services	can	be	programmatically	assembled	in	arbitrary	combinations	to	produce	unique,	isolated	virtual	networks	in	a	matter	of	seconds.	NSX-T	works	by	implementing	three	separate	but	integrated	planes:	management,	control,	and	data.	The	three	planes	are	implemented	as	sets	of	processes,	modules,	and	agents	residing	on	two	types	of	nodes:	manager	appliance	and	transport.	Figure	2‑1:	NSX-T	Architecture	and	Components	2.1						Management	Plane	and	Control	Plane	2.1.1					Management
Plane	The	management	plane	provides	an	entry	point	to	the	system	for	API	as	well	NSX-T	graphical	user	interface.	It	is	responsible	for	maintaining	user	configuration,	handling	user	queries,	and	performing	operational	tasks	on	all	management,	control,	and	data	plane	nodes.	The	NSX-T	Manager	implements	the	management	plane	for	the	NSX-T	ecosystem.	It	provides	an	aggregated	system	view	and	is	the	centralized	network	management	component	of	NSX-T.	NSX-T	Manager	provides	the	following	functionality:	●							Serves	as	a	unique	entry	point	for	user
configuration	via	RESTful	API	(CMP,	automation)	or	NSX-T	user	interface.	●							Responsible	for	storing	desired	configuration	in	its	database.	The	NSX-T	Manager	stores	the	final	configuration	request	by	the	user	for	the	system.	This	configuration	will	be	pushed	by	the	NSX-T	Manager	to	the	control	plane	to	become	a	realized	configuration	(i.e.,	a	configuration	effective	in	the	data	plane).	●							Retrieves	the	desired	configuration	in	addition	to	system	information	(e.g.,	statistics).	●							Provides	ubiquitous	connectivity,	consistent	enforcement	of	security	and
operational	visibility	via	object	management	and	inventory	collection	and	for	multiple	compute	domains	–	up	to	16	vCenters,	container	orchestrators	(TAS/TKGI	&	OpenShift)	and	clouds	(AWS	and	Azure)	Data	plane	components	or	transport	node	run	a	management	plane	agent	(MPA)	that	connects	them	to	the	NSX-T	Manager.	2.1.2					Control	Plane	The	control	plane	computes	the	runtime	state	of	the	system	based	on	configuration	from	the	management	plane.	It	is	also	responsible	for	disseminating	topology	information	reported	by	the	data	plane	elements	and
pushing	stateless	configuration	to	forwarding	engines.	NSX-T	splits	the	control	plane	into	two	parts:	●							Central	Control	Plane	(CCP)	–	The	CCP	is	implemented	as	a	cluster	of	virtual	machines	called	CCP	nodes.	The	cluster	form	factor	provides	both	redundancy	and	scalability	of	resources.	The	CCP	is	logically	separated	from	all	data	plane	traffic,	meaning	any	failure	in	the	control	plane	does	not	affect	existing	data	plane	operations.	User	traffic	does	not	pass	through	the	CCP	Cluster.	●							Local	Control	Plane	(LCP)	–	The	LCP	runs	on	transport	nodes.	It	is
adjacent	to	the	data	plane	it	controls	and	is	connected	to	the	CCP.	The	LCP	is	responsible	for	programing	the	forwarding	entries	and	firewall	rules	of	the	data	plane.	2.1.3					NSX	Manager	Appliance	Instances	of	the	NSX	Manager	and	NSX	Controller	are	bundled	in	a	virtual	machine	called	the	NSX	Manager	Appliance.	In	the	releases	prior	to	2.4,	there	were	separate	appliances	based	on	the	roles,	one	management	appliance	and	3	controller	appliances,	so	total	four	appliances	to	be	deployed	and	managed	for	NSX.	Starting	2.4,	the	NSX	manager,	NSX	policy
manager	and	NSX	controller	elements	will	co-exist	within	a	common	VM.	Three	unique	NSX	appliance	VMs	are	required	for	cluster	availability.	NSX-T	relies	on	a	cluster	of	three	such	NSX	Manager	Appliances	for	scaling	out	and	for	redundancy.	This	three-node	cluster	relies	on	a	majority	of	the	appliances	in	the	cluster	to	be	available	and	as	such,	attention	should	be	paid	to	placement	of	these	appliances	for	availability	The	NSX-T	Manager	stores	all	of	its	information	in	an	in-memory	database	immediately	which	is	synchronized	across	the	cluster	and	written
to	disk,	configuration	or	read	operations	can	be	performed	on	any	appliance.	The	performance	requirements	of	the	NSX	Manager	Appliance’s	disk	is	significantly	reduced	as	most	operations	occur	in	memory.	The	benefits	with	this	converged	manager	appliance	include	less	management	overhead	with	reduced	appliances	to	manage.	And	a	potential	reduction	in	the	total	amount	of	resources	(CPU,	memory	and	disk).	With	the	converged	manager	appliance,	one	only	need	to	consider	the	appliance	sizing	once.	Figure	2‑2:	NSX	Manager	and	Controller
Consolidation	Each	appliance	has	a	dedicated	IP	address	and	its	manager	process	can	be	accessed	directly	or	through	a	load	balancer.	Optionally,	the	three	appliances	can	be	configured	to	maintain	a	virtual	IP	address	which	will	be	serviced	by	one	appliance	selected	among	the	three.	The	design	consideration	of	NSX-T	Manager	appliance	is	further	discussed	at	the	beginning	of	the	beginning	of	the	chapter	7.	2.2						Data	Plane	The	data	plane	performs	stateless	forwarding	or	transformation	of	packets	based	on	tables	populated	by	the	control	plane.	It	reports
topology	information	to	the	control	plane	and	maintains	packet	level	statistics.	The	hosts	running	the	local	control	plane	daemons	and	forwarding	engines	implementing	the	NSX-T	data	plane	are	called	transport	nodes.	Transport	nodes	are	running	an	instance	of	the	NSX-T	virtual	switch	called	the	NSX	Virtual	Distributed	Switch,	or	N-VDS.	On	ESXi	platforms,	the	N-VDS	is	built	on	the	top	of	the	vSphere	Distributed	Switch	(VDS).	In	fact,	the	N-VDS	is	so	close	to	the	VDS	that	NSX-T	3.0	introduced	the	capability	of	installing	NSX-T	directly	on	the	top	of	a	VDS	on
ESXi	hosts.	For	all	other	kinds	of	transport	node,	the	N-VDS	is	based	on	the	platform	independent	Open	vSwitch	(OVS)	and	serves	as	the	foundation	for	the	implementation	of	NSX-T	in	other	environments	(e.g.,	cloud,	containers,	etc.).	As	represented	in	Figure	2‑1:	NSX-T	Architecture	and	Components,	there	are	two	main	types	of	transport	nodes	in	NSX-T:	Hypervisor	Transport	Nodes:	Hypervisor	transport	nodes	are	hypervisors	prepared	and	configured	for	NSX-T.	NSX-T	provides	network	services	to	the	virtual	machines	running	on	those	hypervisors.	NSX-T
currently	supports	VMware	ESXi™	and	KVM	hypervisors.	Edge	Nodes:	VMware	NSX-T	Edge™	nodes	are	service	appliances	dedicated	to	running	centralized	network	services	that	cannot	be	distributed	to	the	hypervisors.	They	can	be	instantiated	as	a	bare	metal	appliance	or	in	virtual	machine	form	factor.	They	are	grouped	in	one	or	several	clusters,	representing	a	pool	of	capacity.	It	is	important	to	remember	that	an	Edge	Node	does	not	represent	a	service	itself	but	just	a	pool	of	capacity	that	one	or	more	services	can	consume.	2.3						NSX-T	Consumption
Model	A	user	can	interact	with	the	NSX-T	platform	through	the	Graphical	User	Interface	or	the	REST	API	framework.	Starting	with	NSX-T	3.0	the	GUI	&	REST	API	are	available	as	options	to	interact	with	the	NSX	Manager:	1)					Policy	Mode	Default	UI	mode.	Previously	called	the	Declarative	or	Simplified	API/Data	Model.	API	accessed	via	URI	which	start	with	/api/policy	2)					Manager	Mode		Continuing	user	interface	to	address	upgrade	&	Cloud	Management	Platform	(CMP)	use	case,	more	info	in	the	next	section.	Advanced	UI/API	will	be	deprecated	over
time,	as	we	transition	all	features/use	case	to	Simplified	UI/API.	API	accessed	via	URI	which	start	with	/api	2.3.1					When	to	use	Policy	vs	Manager	UI/API	VMware	recommendation	is	to	use	NSX-T	Policy	UI	going	forward	as	all	the	new	features	are	implemented	only	on	Policy	UI/API,	unless	you	fall	under	the	following	specific	use	cases:	Upgrade,	vendor	specific	container	option,	or	OpenStack	Integrations.	The	following	table	further	highlights	the	feature	transition	map	to	Policy	UI/API	model.	Policy	Mode	Manager	Mode	Most	new	deployments	should	use
Policy	mode.	Federation	supports	only	Policy	mode.	If	you	want	to	use	Federation,	or	might	use	it	in	future,	use	Policy	mode.	Deployments	which	were	created	using	the	advanced	interface,	for	example,	upgrades	from	versions	before	Policy	mode	was	available.	NSX	Cloud	deployments	Deployments	which	integrate	with	other	plugins.	For	example,	NSX	Container	Plug-in,	Openstack,	and	other	cloud	management	platforms.	Networking	features	available	in	Policy	mode	only:	●							DNS	Services	and	DNS	Zones	●							VPN	●							Forwarding	policies	for	NSX
Cloud	Networking	features	available	in	Manager	mode	only:	●							Forwarding	up	timer	Security	features	available	in	Policy	mode	only:	●							Endpoint	Protection	●							Network	Introspection	(East-West	Service	Insertion)	●							Context	Profiles	○							L7	applications	○							FQDN	●							New	Distributed	Firewall	and	Gateway	Firewall	Layout	○							Categories	○							Auto	service	rules	○							Drafts	Security	features	available	in	Manager	mode	only:	●							Bridge	Firewall	It	is	recommended	that	whichever	mode	is	used	to	create	objects	(Policy	or	Manager)	be	the
only	mode	used	(if	the	Manager	Mode	objects	are	required,	create	all	objects	in	Manager	mode).		Do	not	alternate	use	of	the	modes	or	there	will	be	unpredictable	results.	Note	that	the	default	mode	for	the	NSX	Manager	is	Policy	mode.		When	working	in	an	installation	where	all	objects	are	new	and	created	in	Policy	mode,	the	Manager	mode	option	will	not	be	visible	in	the	UI.		For	details	on	switching	between	modes,	please	see	the	NSX-T	documentation.	2.3.2					NSX-T	Logical	Object	Naming	Changes		The	Manager	API/Data	model	some	of	the	networking	and
security	logical	objects	names	have	changed	to	build	a	unified	object	model.	The	table	below	provides	the	before	and	after	naming	side	by	side	for	those	NSX-T	Logical	objects.	This	just	changes	the	name	for	the	given	NSX-T	object,	but	conceptually	and	functionally	it	is	the	same	as	before.	Networking	Manager	API/UI	Object	Policy	API	Object	Logical	switch	Segment	T0	Logical	Router	Tier-0	Gateway	T1	Logical	Router	Tier-1	Gateway	Centralized	Service	Port	Service	Interface	Security	Manager	API/UI	Object	Policy	API	Object	NSGroup,	IP	Sets,	MAC	Sets
Group	Firewall	Section	Security-Policy	Edge	Firewall	Gateway	Firewall	2.3.3					NSX-T	Policy	API	Framework		NSX-T	Policy	API	framework	provide	an	outcome	driven	config	option.		This	allows	a	single	API	call	to	configure	multiple	NSX	networking	&	security	objects	for	an	application	deployment.		This	is	more	applicable	for	customers	using	automation	and	for	CMP	plugins.	Some	of	the	main	benefits	of	declarative	API	framework	are:	Outcome	driven:	Reduces	the	number	of	configuration	steps	by	allowing	a	user	to	describe	desired	end-goal	(the	“what”),	and
letting	the	system	figure	out	“how”	to	achieve	it.	This	allows	users	to	utilize	user-specified	names,	not	system	generated	IDs	Order	Independent:	create/update/delete	in	any	order	and	always	arrive	at	the	same	consistent	result	Prescriptive:	reduces	potential	for	user	error	with	built-in	dependency	checks	Policy	Life	Cycle	Management:		Simpler	with	single	API	call.	Toggle	marked-to-delete	flag	in	the	JSON	request	body	to	manage	life	cycle	of	entire	application	topology.	The	NSX-T	API	documentation	can	be	accessible	directly	from	the	NSX	Manager	UI,	under
Policy	section	within	API	documentation,	or	it	can	be	accessed	from	code.vmware.com.		The	following	examples	walks	you	through	the	policy	API	examples	for	two	of	the	customer	scenarios:	2.3.4					API	Usage	Example	1-	Templatize	and	Deploy	3-Tier	Application	Topology	This	example	provides	how	Policy	API	helps	user	to	create	the	reusable	code	template	for	deploying	a	3-Tier	APP	shown	in	the	figure,	which	includes	Networking,	Security	&	Services	needed	for	the	application.	Figure	2‑3:	NSX-T	Policy	API	-	Infra	The	desired	outcome	for	deploying	the
application,	as	shown	in	the	figure	above,	can	be	defined	using	JSON.	Once	JSON	request	body	is	defined	to	reflect	the	desired	outcome,	then	API	&	JSON	request	body	can	be	leveraged	to	automate	following	operational	workflows:	Deploy	entire	topology	with	single	API	and	JSON	request	body.	The	same	API/JSON	can	be	further	leveraged	to	templatize	and	reuse	to	deploy	same	application	in	different	environment	(PROD,	TEST	and	DEV).	Handle	life	cycle	management	of	entire	application	topology	by	toggling	the	"marked_for_delete"	flag	in	the	JSON	body	to
true	or	false.	See	details	of	this	at	Example	1.	2.3.5					API	Usage	Example	2-	Application	Security	Policy	Lifecycle	Management		This	example	demonstrates	how	a	security	admin	can	leverage	declarative	API	to	manage	the	life	cycle	of	security	configuration,	grouping,	and	micro-segmentation	policy	for	a	given	3-tier	application.	The	following	figure	depicts	the	entire	application	topology	and	the	desired	outcome	to	provide	zero	trust	security	model	for	an	application.	TO	define	the	desired	outcome	for	defining	grouping	and	micro-segmentation	polices	using
JSON	and	use	single	API	with	JSON	request	body	to	automate	following	operational	workflows:	Deploy	white-list	security	policy	with	single	API	and	JSON	request	body.	The	same	API/JSON	can	further	leveraged	to	templatize	and	reuse	to	secure	same	application	in	different	environment	(PROD,	TEST	and	DEV).	Handle	life	cycle	management	of	entire	application	topology	by	toggling	the	"marked_for_delete"	flag	in	the	JSON	body	to	true	or	false.	The	details	of	both	are	fully	described	in	Appendix	2,	where	the	API	&	JSON	request	body	is	shown	in	full	details.
This	chapter	details	how	NSX-T	creates	virtual	Layer	2	networks,	called	segments,	to	provide	connectivity	between	its	services	and	the	different	virtual	machines	in	the	environment.	3.1						The	NSX	Virtual	Switch	A	transport	node	is,	by	definition,	a	device	implementing	the	NSX-T	data	plane.	The	software	component	running	this	data	plane	is	a	virtual	switch,	responsible	for	forwarding	traffic	between	logical	and	physical	ports	on	the	device.	The	NSX-T	virtual	switch	is	called	the	NSX	Virtual	Distributed	Switch,	or	N-VDS.	On	ESXi	hosts,	the	N-VDS
implementation	is	derived	from	VMware	vSphere®	Distributed	Switch™	(VDS).	With	any	other	kind	of	transport	node	(KVM	hypervisors,	Edges,	bare	metal	servers,	cloud	VMs	etc.)	the	N-VDS	implementation	is	derived	from	the	Open	vSwitch	(OVS).	NSX-T	3.0	is	introducing	a	new	model	for	its	ESXi	transport	nodes	where	the	NSX	software	components	can	be	directly	installed	on	the	top	of	an	existing	VDS.	This	has	several	benefits	such	as	using	existing	model	of	VDS	for	non-overlay	traffic	and	avoiding	the	migration	of	VMkernel	to	N-VDS.		Representations	of
the	NSX	virtual	switch	in	this	document	will	thus	be	labeled	“N-VDS	or	VDS	with	NSX”	for	each	scenario	where	the	transport	node	represented	can	be	an	ESXi	host.	Note	that	if	this	new	VDS-based	model	greatly	simplifies	NSX	consumption	on	the	ESXi	platform,	it	has	very	little	if	any	impact	on	NSX-based	designs:	both	N-VDS	and	VDS	running	NSX	provide	the	same	NSX	capabilities,	only	with	a	different	representation	in	vCenter.	Operational	details	on	how	to	run	NSX	on	VDS	are	out	of	scope	of	this	document,	but	simplification	in	term	of	VMkernel	interface
management	that	this	new	model	brings	will	be	called	out	in	the	design	section.	We	thus	recommend	deploying	NSX	on	the	top	of	a	VDS	on	ESXi	hosts	instead	of	using	an	N-VDS	for	greenfield	deployments	starting	with	supported	ESXi	and	vSphere	versions.	The	N-VDS	is	still	the	only	virtual	switch	available	on	platforms	other	than	ESXi.	3.1.1					Segments	and	Transport	Zones	In	NSX-T,	virtual	layer	2	domains	are	called	segments.	There	are	two	kinds	of	segments:	VLAN	backed	segments	Overlay	backed	segments	A	VLAN	backed	segment	is	a	layer	2
broadcast	domain	that	is	implemented	as	a	traditional	VLAN	in	the	physical	infrastructure.	That	means	that	traffic	between	two	VMs	on	two	different	hosts	but	attached	to	the	same	VLAN	backed	segment	will	be	carried	over	a	VLAN	between	the	two	hosts	in	native	IEEE	encapsulation.	The	resulting	constraint	is	that	an	appropriate	VLAN	needs	to	be	provisioned	in	the	physical	infrastructure	for	those	two	VMs	to	communicate	at	layer	2	over	a	VLAN	backed	segment.	On	the	other	hand,	two	VMs	on	different	hosts	and	attached	to	the	same	overlay	backed
segment	will	have	their	layer	2	traffic	carried	by	tunnel	between	their	hosts.	This	IP	tunnel	is	instantiated	and	maintained	by	NSX	without	the	need	for	any	segment	specific	configuration	in	the	physical	infrastructure,	thus	decoupling	NSX	virtual	networking	from	this	physical	infrastructure.	Note:	representation	of	NSX-T	segments	in	vCenter	This	design	document	will	only	use	the	term	“segment”	when	referring	to	the	NSX-T	virtual	Layer	broadcast	domain.	Note	however	that	in	the	vCenter	UI,	those	segments	will	appear	as	“opaque	networks”	on	host
configured	with	an	N-VDS,	and	as	NSX	dvportgroups	on	host	configured	with	a	VDS.	Below	is	a	screenshot	representing	both	possible	representation:	Check	the	following	KB	article	for	more	information	on	the	impact	of	this	difference	in	representation:	Segments	are	created	as	part	of	an	NSX	object	called	a	transport	zone.	There	are	VLAN	transport	zones	and	overlay	transport	zones.	A	segment	created	in	a	VLAN	transport	zone	will	be	a	VLAN	backed	segment,	while,	as	you	can	guess,	a	segment	created	in	an	overlay	transport	zone	will	be	an	overlay	backed
segment.	NSX	transport	nodes	attach	to	one	or	more	transport	zones,	and	as	a	result,	they	gain	access	to	the	segments	created	in	those	transport	zones.	Transport	zones	can	thus	be	seen	as	objects	defining	the	scope	of	the	virtual	network	because	they	provide	access	to	groups	of	segments	to	the	hosts	that	attach	to	them,	as	illustrated	in	Figure	3‑1:	NSX-T	Transport	Zone	below:	Figure	3‑1:	NSX-T	Transport	Zone	In	above	diagram,	transport	node	1	is	attached	to	transport	zone	“Staging”,	while	transport	nodes	2-4	are	attached	to	transport	zone	“Production”.
If	one	creates	a	segment	1	in	transport	zone	“Production”,	each	transport	node	in	the	“Production”	transport	zone	immediately	gain	access	to	it.	However,	this	segment	1	does	not	extend	to	transport	node	1.	The	span	of	segment	1	is	thus	defined	by	the	transport	zone	“Production”	it	belongs	to.	Few	additional	points	related	to	transport	zones	and	transport	nodes:	●							Multiple	virtual	switches,	N-VDS,	VDS	(with	or	without	NSX)	or	VSS,	can	coexist	on	a	ESXi	transport	node;	however,	a	given	pNIC	can	only	be	associated	with	a	single	virtual	switch.	This
behavior	is	specific	to	the	VMware	virtual	switch	model,	not	to	NSX.	●							An	NSX	virtual	switch	(N-VDS	or	VDS	with	NSX)	can	attach	to	a	single	overlay	transport	zone	and	multiple	VLAN	transport	zones	at	the	same	time.	●							A	transport	node	can	have	multiple	NSX	virtual	switches	–	provided	TN	has	more	than	2	pNICs	A	transport	node	can	thus	attach	to	multiple	overlays	and	VLAN	transport	zones.	All	virtual	switches	can	co-exist	under	the	same	host	except	one	cannot	mix	VDS	with	NSX	and	N-VDS	on	the	same	host.	●							A	transport	zone	can	only	be
attached	to	a	single	NSX	virtual	switch	on	a	given	transport	node.	In	other	words,	two	NSX	virtual	switches	on	the	same	transport	node	cannot	be	attached	to	the	same	transport	zone.	●							Edge	transport	node-specific	points:	○							an	edge	transport	node	only	has	one	N-VDS	attached	to	an	overlay	transport	zone.	○							If	multiple	VLAN	segments	are	backed	by	the	same	VLAN	ID,	only	one	of	those	segments	will	be	“realized”	(i.e.	working	effectively).	Please	see	additional	consideration	at	Running	a	VDS	prepared	for	NSX	on	ESXi	hosts.	3.1.2					Uplink	vs.
pNIC	NSX	introduces	a	clean	differentiation	between	the	physical	uplinks	of	the	host	(aka	pNICs,	or	vmnics	on	ESXi	hosts)	and	the	uplinks	of	the	NSX	virtual	switch.	The	uplinks	of	the	NSX	virtual	switch	are	logical	constructs	that	can	be	mapped	to	one	or	multiple	pNICs	bundled	into	a	link	aggregation	group	(LAG).	Figure	3‑2:	N-VDS	Uplinks	vs.	Hypervisor	pNICs	illustrates	the	difference	between	an	uplink	and	a	pNIC:	Figure	3‑2:	N-VDS	Uplinks	vs.	Hypervisor	pNICs	In	this	example,	a	single	virtual	switch	with	two	uplinks	is	defined	on	the	hypervisor
transport	node.	One	of	the	uplinks	is	a	LAG,	bundling	physical	port	p1	and	p2,	while	the	other	uplink	is	only	backed	by	a	single	physical	port	p3.	Both	uplinks	look	the	same	from	the	perspective	of	the	virtual	switch;	there	is	no	functional	difference	between	the	two.	Note	that	the	example	represented	in	this	picture	is	by	no	means	a	design	recommendation,	it’s	just	illustrating	the	difference	between	the	virtual	switch	uplinks	and	the	host	physical	uplinks.	3.1.3					Teaming	Policy	The	teaming	policy	defines	how	the	NSX	virtual	switch	uses	its	uplinks	for
redundancy	and	traffic	load	balancing.	There	are	two	main	options	for	teaming	policy	configuration:	●							Failover	Order	–	An	active	uplink	is	specified	along	with	an	optional	list	of	standby	uplinks.	Should	the	active	uplink	fail,	the	next	available	uplink	in	the	standby	list	takes	its	place	immediately.	●							Load	Balanced	Source	Port/Load	Balance	Source	Mac	Address	–	Traffic	is	distributed	across	a	specified	list	of	active	uplinks.	○							The	“Load	Balanced	Source	Port”	policy	maps	a	virtual	interface	to	an	uplink	of	the	host.	Traffic	sent	by	this	virtual	interface
will	leave	the	host	through	this	uplink	only,	and	traffic	destined	to	this	virtual	interface	will	necessarily	enter	the	host	via	this	uplink.	○							The	“Load	Balanced	Source	Mac	Address”	goes	a	little	bit	further	in	term	of	granularity	for	virtual	interfaces	that	can	source	traffic	from	different	mac	addresses:	two	frames	sent	by	the	same	virtual	interface	could	be	pinned	to	different	host	uplinks	based	on	their	source	mac	address.	The	teaming	policy	only	defines	how	the	NSX	virtual	switch	balances	traffic	across	its	uplinks.	The	uplinks	can	in	turn	be	individual	pNICs
or	LAGs	(as	seen	in	the	previous	section.)	Note	that	a	LAG	uplink	has	its	own	hashing	options,	however,	those	hashing	options	only	define	how	traffic	is	distributed	across	the	physical	members	of	the	LAG	uplink,	whereas	the	teaming	policy	define	how	traffic	is	distributed	between	NSX	virtual	switch	uplinks.	Figure	3‑3:	N-VDS	Teaming	Policies	Figure	3‑3:	N-VDS	Teaming	Policies	presents	an	example	of	the	failover	order	and	source	teaming	policy	options,	illustrating	how	the	traffic	from	two	different	VMs	in	the	same	segment	is	distributed	across	uplinks.	The
uplinks	of	the	virtual	switch	could	be	any	combination	of	single	pNICs	or	LAGs;	whether	the	uplinks	are	pNICs	or	LAGs	has	no	impact	on	the	way	traffic	is	balanced	between	uplinks.	When	an	uplink	is	a	LAG,	it	is	only	considered	down	when	all	the	physical	members	of	the	LAG	are	down.	When	defining	a	transport	node,	the	user	must	specify	a	default	teaming	policy	that	will	be	applicable	by	default	to	the	segments	available	to	this	transport	node.	3.1.3.1							ESXi	Hypervisor-specific	Teaming	Policy	ESXi	hypervisor	transport	nodes	allow	defining	more	specific
teaming	policies,	identified	by	a	name,	on	top	of	the	default	teaming	policy.	It’s	called	“named	teaming	policies”	which	can	override	the	default	teaming	policy	for	some	specific	VLAN	backed	segments.	Overlay	backed	segments	always	follow	the	default	teaming	policy.	This	capability	is	typically	used	to	steer	precisely	infrastructure	traffic	from	the	host	to	specific	uplinks.	Figure	3‑4:	Named	Teaming	Policy	In	the	above	Figure	3‑4:	Named	Teaming	Policy,	the	default	failover	order	teaming	policy	specifies	u1	as	the	active	uplink	and	u2	as	the	standby	uplink.	By
default,	all	the	segments	are	thus	going	to	send	and	receive	traffic	on	u1.	However,	an	additional	failover	order	teaming	policy	called	“Storage”	has	been	added,	where	u2	is	active	and	u1	standby.	The	VLAN	segment	where	VM3	is	attached	can	be	mapped	to	the	“Storage”	teaming	policy,	thus	overriding	the	default	teaming	policy	for	the	VLAN	traffic	consumed	by	this	VM3.	Sometimes,	it	might	be	desirable	to	only	send	overlay	traffic	on	a	limited	set	of	uplinks.	This	can	also	be	achieved	with	named	teaming	policies	for	VLAN	backed	segment,	as	represented	in
the	Figure	3‑5:	Other	named	teaming	policy	use	case	below:	Figure	3‑5:	Other	named	teaming	policy	use	case	Here,	the	default	teaming	policy	only	includes	uplinks	u1	and	u2.	As	a	result,	overlay	traffic	is	constrained	to	those	uplinks.	However,	an	additional	teaming	policy	named	“VLAN-traffic”	is	configured	for	load	balancing	traffic	on	uplink	u3	and	u4.	By	mapping	VLAN	segments	to	this	teaming	policy,	overlay	and	VLAN	traffic	are	segregated.	3.1.3.2							KVM	Hypervisor	teaming	policy	capabilities	KVM	hypervisor	transport	nodes	can	only	have	a	single
LAG	and	only	support	the	failover	order	default	teaming	policy;	the	load	balance	source	teaming	policies	and	named	teaming	policies	are	not	available	for	KVM.	A	LAG	must	be	configured	for	more	than	one	physical	uplink	to	be	active	on	an	N-VDS	on	a	KVM	hypervisor.	3.1.4					Uplink	Profile	As	mentioned	earlier,	a	transport	node	includes	at	least	one	NSX	virtual	switch,	implementing	the	NSX	data	plane.	It	is	common	for	multiple	transport	nodes	to	share	the	exact	same	NSX	virtual	switch	configuration.	It	is	also	very	difficult	from	an	operational	standpoint	to
configure	(and	maintain)	multiple	parameters	consistently	across	many	devices.	For	this	purpose,	NSX	defines	a	separate	object	called	an	uplink	profile	that	acts	as	a	template	for	the	configuration	of	a	virtual	switch.	The	administrator	can	this	way	create	multiple	transport	nodes	with	similar	virtual	switches	by	simply	pointing	to	a	common	uplink	profile.	Even	better,	when	the	administrator	modifies	a	parameter	in	the	uplink	profile,	it	is	automatically	updated	in	all	the	transport	nodes	following	this	uplink	profile.	The	following	parameters	are	defined	in	an
uplink	profile:	●							The	transport	VLAN	used	for	overlay	traffic.	Overlay	traffic	will	be	tagged	with	the	VLAN	ID	specified	in	this	field.	●							The	MTU	of	the	uplinks.	NSX	will	assume	that	it	can	send	overlay	traffic	with	this	MTU	on	the	physical	uplinks	of	the	transport	node	without	any	fragmentation	by	the	physical	infrastructure.	●							The	name	of	the	uplinks	and	the	LAGs	used	by	the	virtual	switch.	LAGs	are	optional	of	course,	but	if	you	want	to	define	some,	you	can	give	them	a	name,	specify	the	number	of	links	and	the	hash	algorithm	they	will	use.	●						
The	teaming	policies	applied	to	the	uplinks	(default	and	named	teaming	policies)	The	virtual	switch	uplinks	defined	in	the	uplink	profile	must	be	mapped	to	real,	physical	uplinks	on	the	device	becoming	a	transport	node.	Figure	3‑6:	Transport	Node	Creation	with	Uplink	Profile	shows	how	a	transport	node	“TN1”	is	created	using	the	uplink	profile	“UP1”.	Figure	3‑6:	Transport	Node	Creation	with	Uplink	Profile	The	uplinks	U1	and	U2	listed	in	the	teaming	policy	of	the	uplink	profile	UP1	are	just	variable	names.	When	transport	node	TN1	is	created,	some	physical
uplinks	available	on	the	host	are	mapped	to	those	variables.	Here,	we’re	mapping	vmnic0	to	U1	and	vmnic1	to	U2.	If	the	uplink	profile	defined	LAGs,	physical	ports	on	the	host	being	prepared	as	a	transport	node	would	have	to	be	mapped	to	the	member	ports	of	the	LAGs	defined	in	the	uplink	profile.	The	benefit	of	this	model	is	that	we	can	create	an	arbitrary	number	of	transport	nodes	following	the	configuration	of	the	same	uplink	profile.	There	might	be	local	differences	in	the	way	virtual	switch	uplinks	are	mapped	to	physical	ports.	For	example,	one	could
create	a	transport	node	TN2	still	using	the	same	UP1	uplink	profile,	but	mapping	U1	to	vmnic3	and	U2	to	vmnic0.	Then,	it’s	possible	to	change	the	teaming	policy	of	UP1	to	failover	order	and	setting	U1	as	active	and	U2	as	standby.	On	TN1,	this	would	lead	vmnic0	as	active	and	vmnic1	as	standby,	while	TN2	would	use	vmnic3	as	active	and	vmnic0	as	standby.	If	uplink	profiles	allow	configuring	the	virtual	switches	of	multiple	transport	nodes	in	a	centralized	fashion,	they	also	allow	for	very	granular	configuration	if	needed.	Suppose	now	that	we	want	to	turn	a
mix	of	ESXi	host	and	KVM	hosts	into	transport	zone.	UP1	defined	above	cannot	be	applied	to	KVM	hosts	because	those	only	support	the	failover	order	policy.	The	administrator	can	simply	create	an	uplink	profile	specific	to	KVM	hosts,	with	a	failover	order	teaming	policy,	while	keeping	an	uplink	profile	with	a	source	teaming	policy	for	ESXi	hosts,	as	represented	in	Figure	3‑7:	Leveraging	Different	Uplink	Profiles	below:	Figure	3‑7:	Leveraging	Different	Uplink	Profiles	If	NSX	had	a	single	centralized	configuration	for	all	the	hosts,	we	would	have	been	forced	to
fall	back	to	the	lowest	common	denominator	failover	order	teaming	policy	for	all	the	hosts.	The	uplink	profile	model	also	allows	for	different	transport	VLANs	on	different	hosts.	This	can	be	useful	when	the	same	VLAN	ID	is	not	available	everywhere	in	the	network,	for	example,	the	case	for	migration,	reallocation	of	VLANs	based	on	topology	or	geo-location	change.	When	running	NSX	on	VDS,	the	LAG	definition	and	the	MTU	fields	of	the	uplink	profile	are	now	directly	defined	on	the	VDS,	controlled	by	vCenter.	It	is	still	possible	to	associate	transport	node
based	on	N-VDS	and	transport	nodes	based	on	VDS	to	the	same	uplink	profile.	It’s	just	that	the	LAG	definition	and	the	MTU	will	be	ignored	on	the	VDS-based	transport	node.	3.1.5					Transport	Node	Profile	NSX-T	2.4	introduced	the	concept	of	Transport	Node	Profile	(TNP	in	short).	The	TNP	is	a	template	for	creating	a	transport	node	that	can	be	applied	to	a	group	of	hosts	in	a	single	shot.	Just	assume	that	there	is	a	cluster	with	several	hosts	with	the	same	configuration	as	the	one	represented	in	Figure	3‑6:	Transport	Node	Creation	with	Uplink	Profile	above.
The	TNP	would	capture	the	association	between	p1port1,	p2port2	and	so	on.	This	TNP	could	then	be	applied	to	the	cluster,	thus	turning	all	its	hosts	into	transport	nodes	in	a	single	configuration	step.	Further,	configuration	changes	are	kept	in	sync	across	all	the	hosts,	leading	to	easier	cluster	management.	3.1.6					Network	I/O	Control	Network	I/O	Control,	or	NIOC,	is	the	implementation	in	NSX-T	of	vSphere’s	Network	I/O	Control	v3.	This	feature	allows	managing	traffic	contention	on	the	uplinks	of	an	ESXi	hypervisor.	NIOC	allows	the	creation	of	shares,
limits	and	bandwidth	reservation	for	the	different	kinds	of	ESXi	infrastructure	traffic.	Shares:	Shares,	from	1	to	100,	reflect	the	relative	priority	of	a	traffic	type	against	the	other	traffic	types	that	are	active	on	the	same	physical	adapter.	Reservation:	The	minimum	bandwidth	that	must	be	guaranteed	on	a	single	physical	adapter.	Reserved	bandwidth	for	system	traffic	that	is	unused	becomes	available	to	other	types	of	system	traffic.		Unused	system	traffic	reservations	do	NOT	become	available	to	VM	traffic.	Limit:	The	maximum	bandwidth	that	a	traffic	type	can
consume	on	a	single	physical	adapter.	The	pre-determined	types	of	ESXi	infrastructure	traffic	are:	Management	Traffic	is	for	host	management	Fault	Tolerance	(FT)	is	for	sync	and	recovery.	NFS	Traffic	is	traffic	related	to	a	file	transfer	in	the	network	file	system.	vSAN	traffic	is	generated	by	virtual	storage	area	network.	vMotion	traffic	is	for	computing	resource	migration.	vSphere	replication	traffic	is	for	replication.	vSphere	Data	Protection	Backup	traffic	is	generated	by	backup	of	data.	Virtual	Machine	traffic	is	generated	by	virtual	machines	workload	iSCSI
traffic	is	for	Internet	Small	Computer	System	Interface	storage	When	using	an	N-VDS	on	the	transport	node,	the	NIOC	parameters	are	specified	as	a	profile	that	is	provided	as	part	of	the	Uplink	Profile	during	the	ESXi	Transport	Node	creation.	If	the	transport	node	is	running	NSX	on	top	of	a	VDS,	the	NIOC	configuration	takes	place	directly	in	vCenter.	In	addition	to	system	traffic	parameters,	NIOC	provides	an	additional	level	of	granularity	for	the	VM	traffic	category:	share,	reservation	and	limits	can	also	be	applied	at	the	Virtual	Machine	vNIC	level.	This
configuration	is	still	done	with	vSphere,	by	editing	the	vNIC	properties	of	the	VMs.	Network	Resource	Pools	are	used	to	allocate	bandwidth	on	multiple	VMs.		For	more	details,	see	the	vSphere	documentation.	3.1.7					Enhanced	Data	Path	NSX	virtual	switch	When	creating	an	ESXi	Transport	Node,	the	administrator	must	choose	between	two	types	of	NSX	virtual	switch:	standard	or	Enhanced	Data	Path	(EDP).	This	option	is	available	irrespective	of	whether	NSX	is	installed	using	an	N-VDS	or	a	VDS.	The	Enhanced	Data	Path	virtual	switch	is	optimized	for	the
Network	Function	Virtualization,	where	the	workloads	typically	perform	networking	functions	with	very	demanding	requirements	in	term	of	latency	and	packet	rate.	In	order	to	accommodate	this	use	case,	the	Enhanced	Data	Path	virtual	switch	has	an	optimized	data	path,	with	a	different	resource	allocation	model	on	the	host.	The	specifics	of	this	virtual	switch	are	outside	the	scope	of	this	document.	The	important	points	to	remember	regarding	this	switch	are:	It	can	only	be	instantiated	on	an	ESXi	hypervisor.	Its	uses	case	is	very	specific	to	NFV.	The	two	kinds
of	virtual	switches	can	however	coexist	on	the	same	hypervisor.	It’s	not	recommended	for	common	enterprise	or	cloud	use	cases.	For	the	further	understanding	of	enhanced	data	path	N-VDS	refer	to	following	resources.	For	the	performance	related	understanding	refer	to	NFV:	Raw	Packet	Processing	Performance.	3.2						Logical	Switching	This	section	on	logical	switching	focuses	on	overlay	backed	segments	due	to	their	ability	to	create	isolated	logical	L2	networks	with	the	same	flexibility	and	agility	that	exists	with	virtual	machines.	This	decoupling	of	logical
switching	from	the	physical	network	infrastructure	is	one	of	the	main	benefits	of	adopting	NSX-T.	3.2.1					Overlay	Backed	Segments	Figure	3‑8:	Overlay	Networking	–	Logical	and	Physical	View	presents	logical	and	physical	network	views	of	a	logical	switching	deployment.	Figure	3‑8:	Overlay	Networking	–	Logical	and	Physical	View	In	the	upper	part	of	the	diagram,	the	logical	view	consists	of	five	virtual	machines	that	are	attached	to	the	same	segment,	forming	a	virtual	broadcast	domain.	The	physical	representation,	at	the	bottom,	shows	that	the	five	virtual
machines	are	running	on	hypervisors	spread	across	three	racks	in	a	data	center.	Each	hypervisor	is	an	NSX-T	transport	node	equipped	with	a	tunnel	endpoint	(TEP).	The	TEPs	are	configured	with	IP	addresses,	and	the	physical	network	infrastructure	just	need	to	provide	IP	connectivity	between	them.	Whether	the	TEPs	are	L2	adjacent	in	the	same	subnet	or	spread	in	different	subnets	does	not	matter.	The	VMware®	NSX-T	Controller™	(not	pictured)	distributes	the	IP	addresses	of	the	TEPs	across	the	transport	nodes	so	they	can	set	up	tunnels	with	their	peers.
The	example	shows	“VM1”	sending	a	frame	to	“VM5”.	In	the	physical	representation,	this	frame	is	transported	via	an	IP	point-to-point	tunnel	between	transport	nodes	“HV1”	to	“HV5”.	The	benefit	of	this	NSX-T	overlay	model	is	that	it	allows	direct	connectivity	between	transport	nodes	irrespective	of	the	specific	underlay	inter-rack	(or	even	inter-datacenter)	connectivity	(i.e.,	L2	or	L3).	Segments	can	also	be	created	dynamically	without	any	configuration	of	the	physical	network	infrastructure.	3.2.2					Flooded	Traffic	The	NSX-T	segment	behaves	like	a	LAN,
providing	the	capability	of	flooding	traffic	to	all	the	devices	attached	to	this	segment;	this	is	a	cornerstone	capability	of	layer	2.	NSX-T	does	not	differentiate	between	the	different	kinds	of	frames	replicated	to	multiple	destinations.	Broadcast,	unknown	unicast,	or	multicast	traffic	will	be	flooded	in	a	similar	fashion	across	a	segment.	In	the	overlay	model,	the	replication	of	a	frame	to	be	flooded	on	a	segment	is	orchestrated	by	the	different	NSX-T	components.	NSX-T	provides	two	different	methods	for	flooding	traffic	described	in	the	following	sections.	They	can
be	selected	on	a	per	segment	basis.	3.2.2.1							Head-End	Replication	Mode	In	the	head	end	replication	mode,	the	transport	node	at	the	origin	of	the	frame	to	be	flooded	sends	a	copy	to	each	other	transport	node	that	is	connected	to	this	segment.	Figure	3‑9:	Head-end	Replication	Mode	offers	an	example	of	virtual	machine	“VM1”	on	hypervisor	“HV1”	attached	to	segment	“S1”.	“VM1”	sends	a	broadcast	frame	on	“S1”.	“HV1”	floods	the	frame	to	the	logical	ports	local	to	“HV1”,	then	determines	that	there	are	remote	transport	nodes	part	of	“S1”.	The	NSX-T
Controller	advertised	the	TEPs	of	those	remote	interested	transport	nodes,	so	“HV1”	will	send	a	tunneled	copy	of	the	frame	to	each	of	them.	Figure	3‑9:	Head-end	Replication	Mode	The	diagram	illustrates	the	flooding	process	from	the	hypervisor	transport	node	where	“VM1”	is	located.	“HV1”	sends	a	copy	of	the	frame	that	needs	to	be	flooded	to	every	peer	that	is	interested	in	receiving	this	traffic.	Each	green	arrow	represents	the	path	of	a	point-to-point	tunnel	through	which	the	frame	is	forwarded.	In	this	example,	hypervisor	“HV6”	does	not	receive	a	copy	of
the	frame.	This	is	because	the	NSX-T	Controller	has	determined	that	there	is	no	recipient	for	this	frame	on	that	hypervisor.	In	this	mode,	the	burden	of	the	replication	rests	entirely	on	source	hypervisor.	Seven	copies	of	the	tunnel	packet	carrying	the	frame	are	sent	over	the	uplink	of	“HV1”.	This	should	be	considered	when	provisioning	the	bandwidth	on	this	uplink.	3.2.2.2							Two-tier	Hierarchical	Mode	In	the	two-tier	hierarchical	mode,	transport	nodes	are	grouped	according	to	the	subnet	of	the	IP	address	of	their	TEP.	Transport	nodes	in	the	same	rack
typically	share	the	same	subnet	for	their	TEP	IPs,	though	this	is	not	mandatory.	Based	on	this	assumption,	Figure	3‑10:	Two-tier	Hierarchical	Mode	shows	hypervisor	transport	nodes	classified	in	three	groups:	subnet	10.0.0.0,	subnet	20.0.0.0	and	subnet	30.0.0.0.	In	this	example,	the	IP	subnet	have	been	chosen	to	be	easily	readable;	they	are	not	public	IPs.	Figure	3‑10:	Two-tier	Hierarchical	Mode	Assume	that	“VM1”	on	“HV1”	needs	to	send	the	same	broadcast	on	“S1”	as	in	the	previous	section	on	head-end	replication.	Instead	of	sending	an	encapsulated	copy
of	the	frame	to	each	remote	transport	node	attached	to	“S1”,	the	following	process	occurs:	“HV1”	sends	a	copy	of	the	frame	to	all	the	transport	nodes	within	its	group	(i.e.,	with	a	TEP	in	the	same	subnet	as	its	TEP).	In	this	case,	“HV1”	sends	a	copy	of	the	frame	to	“HV2”	and	“HV3”.	“HV1”	sends	a	copy	to	a	single	transport	node	on	each	of	the	remote	groups.	For	the	two	remote	groups	-	subnet	20.0.0.0	and	subnet	30.0.0.0	–	“HV1”	selects	an	arbitrary	member	of	those	groups	and	sends	a	copy	of	the	packet	there	a	bit	set	to	indicate	the	need	for	local
replication.	In	this	example,	“HV1”	selected	“HV5”	and	“HV7”.	Transport	nodes	in	the	remote	groups	perform	local	replication	within	their	respective	groups.	“HV5”	relays	a	copy	of	the	frame	to	“HV4”	while	“HV7”	sends	the	frame	to	“HV8”	and	“HV9”.	Note	that	“HV5”	does	not	relay	to	“HV6”	as	it	is	not	interested	in	traffic	from	“LS1”.	The	source	hypervisor	transport	node	knows	about	the	groups	based	on	the	information	it	has	received	from	the	NSX-T	Controller.	It	does	not	matter	which	transport	node	is	selected	to	perform	replication	in	the	remote	groups
so	long	as	the	remote	transport	node	is	up	and	available.	If	this	were	not	the	case	(e.g.,	“HV7”	was	down),	the	NSX-T	Controller	would	update	all	transport	nodes	attached	to	“S1”.	“HV1”	would	then	choose	“HV8”	or	“HV9”	to	perform	the	replication	local	to	group	30.0.0.0.	In	this	mode,	as	with	head	end	replication	example,	seven	copies	of	the	flooded	frame	have	been	made	in	software,	though	the	cost	of	the	replication	has	been	spread	across	several	transport	nodes.	It	is	also	interesting	to	understand	the	traffic	pattern	on	the	physical	infrastructure.	The
benefit	of	the	two-tier	hierarchical	mode	is	that	only	two	tunnel	packets	(compared	to	the	headend	mode	of	five	packets)	were	sent	between	racks,	one	for	each	remote	group.	This	is	a	significant	improvement	in	the	network	inter-rack	(or	inter-datacenter)	fabric	utilization	-	where	available	bandwidth	is	typically	less	than	within	a	rack.	That	number	that	could	be	higher	still	if	there	were	more	transport	nodes	interested	in	flooded	traffic	for	“S1”	on	the	remote	racks.	In	the	case	where	the	TEPs	are	in	another	data	center,	the	savings	could	be	significant.	Note
also	that	this	benefit	in	term	of	traffic	optimization	provided	by	the	two-tier	hierarchical	mode	only	applies	to	environments	where	TEPs	have	their	IP	addresses	in	different	subnets.	In	a	flat	Layer	2	network,	where	all	the	TEPs	have	their	IP	addresses	in	the	same	subnet,	the	two-tier	hierarchical	replication	mode	would	lead	to	the	same	traffic	pattern	as	the	source	replication	mode.	The	default	two-tier	hierarchical	flooding	mode	is	recommended	as	a	best	practice	as	it	typically	performs	better	in	terms	of	physical	uplink	bandwidth	utilization.	3.2.3					Unicast
Traffic	When	a	frame	is	destined	to	an	unknown	MAC	address,	it	is	flooded	in	the	network.	Switches	typically	implement	a	MAC	address	table,	or	filtering	database	(FDB),	that	associates	MAC	addresses	to	ports	in	order	to	prevent	flooding.	When	a	frame	is	destined	to	a	unicast	MAC	address	known	in	the	MAC	address	table,	it	is	only	forwarded	by	the	switch	to	the	corresponding	port.	The	NSX	virtual	switch	maintains	such	a	table	for	each	segment/logical	switch	it	is	attached	to.	A	MAC	address	can	be	associated	with	either	a	virtual	NIC	(vNIC)	of	a	locally
attached	VM	or	a	remote	TEP	(when	the	MAC	address	is	located	on	a	remote	transport	node	reached	via	the	tunnel	identified	by	that	TEP).	Figure	3‑11:	Unicast	Traffic	between	VMs	illustrates	virtual	machine	“Web3”	sending	a	unicast	frame	to	another	virtual	machine	“Web1”	on	a	remote	hypervisor	transport	node.	In	this	example,	the	NSX	virtual	switch	on	both	the	source	and	destination	hypervisor	transport	nodes	are	fully	populated.	Figure	3‑11:	Unicast	Traffic	between	VMs	“Web3”	sends	a	frame	to	“Mac1”,	the	MAC	address	of	the	vNIC	of	“Web1”.	“HV3”
receives	the	frame	and	performs	a	lookup	for	the	destination	MAC	address	in	its	MAC	address	table.	There	is	a	hit.	“Mac1”	is	associated	to	the	“TEP1”	on	“HV1”.		“HV3”	encapsulates	the	frame	and	sends	it	to	“TEP1”.		“HV1”	receives	the	tunnel	packet,	addressed	to	itself	and	decapsulates	it.	TEP1	then	performs	a	lookup	for	the	destination	MAC	of	the	original	frame.	“Mac1”	is	also	a	hit	there,	pointing	to	the	vNIC	of	“VM1”.	The	frame	is	then	delivered	to	its	final	destination.	This	mechanism	is	relatively	straightforward	because	at	layer	2	in	the	overlay
network,	all	the	known	MAC	addresses	are	either	local	or	directly	reachable	through	a	point-to-point	tunnel.	In	NSX-T,	the	MAC	address	tables	can	be	populated	by	the	NSX-T	Controller	or	by	learning	from	the	data	plane.	The	benefit	of	data	plane	learning,	further	described	in	the	next	section,	is	that	it	is	immediate	and	does	not	depend	on	the	availability	of	the	control	plane.	3.2.4					Data	Plane	Learning	In	a	traditional	layer	2	switch,	MAC	address	tables	are	populated	by	associating	the	source	MAC	addresses	of	frames	received	with	the	ports	where	they
were	received.	In	the	overlay	model,	instead	of	a	port,	MAC	addresses	reachable	through	a	tunnel	are	associated	with	the	TEP	for	the	remote	end	of	this	tunnel.	Data	plane	learning	is	a	matter	of	associating	source	MAC	addresses	with	source	TEPs.	Ideally	data	plane	learning	would	occur	through	the	NSX	virtual	switch	associating	the	source	MAC	address	of	received	encapsulated	frames	with	the	source	IP	of	the	tunnel	packet.	But	this	common	method	used	in	overlay	networking	would	not	work	for	NSX	with	the	two-tier	replication	model.	Indeed,	as	shown	in
part	3.2.2.2,	it	is	possible	that	flooded	traffic	gets	replicated	by	an	intermediate	transport	node.	In	that	case,	the	source	IP	address	of	the	received	tunneled	traffic	represents	the	intermediate	transport	node	instead	of	the	transport	node	that	originated	the	traffic.	Figure	3‑12:	Data	Plane	Learning	Using	Tunnel	Source	IP	Address	below	illustrates	this	problem	by	focusing	on	the	flooding	of	a	frame	from	VM1	on	HV1	using	the	two-tier	replication	model	(similar	to	what	was	described	earlier	in	Figure	3‑10:	Two-tier	Hierarchical	Mode.)	When	intermediate
transport	node	HV5	relays	the	flooded	traffic	from	HV1	to	HV4,	it	is	actually	decapsulating	the	original	tunnel	traffic	and	re-encapsulating	it,	using	its	own	TEP	IP	address	as	a	source.	Figure	3‑12:	Data	Plane	Learning	Using	Tunnel	Source	IP	Address	The	problem	is	thus	that,	if	the	NSX	virtual	switch	on	“HV4”	was	using	the	source	tunnel	IP	address	to	identify	the	origin	of	the	tunneled	traffic,	it	would	wrongly	associate	Mac1	to	TEP5.	To	solve	this	problem,	upon	re-encapsulation,	TEP	5	inserts	an	identifier	for	the	source	TEP	as	NSX-T	metadata	in	the	tunnel
header.	Metadata	is	a	piece	of	information	that	is	carried	along	with	the	payload	of	the	tunnel.	Figure	3‑13:	Data	Plane	Learning	Leveraging	Metadata	displays	the	same	tunneled	frame	from	“Web1”	on	“HV1”,	this	time	carried	with	a	metadata	field	identifying	“TEP1”	as	the	origin.	Figure	3‑13:	Data	Plane	Learning	Leveraging	Metadata	With	this	additional	piece	of	information,	“HV4”	can	correctly	identify	the	origin	of	the	tunneled	traffic	on	replicated	traffic.	3.2.5					Tables	Maintained	by	the	NSX-T	Controller	While	NSX-T	can	populate	the	filtering	database	of
a	segment/logical	switch	from	the	data	plane	just	like	traditional	physical	networking	devices,	the	NSX-T	Controller	is	also	building	a	central	repository	for	some	tables	that	enhances	the	behavior	of	the	system.	These	tables	include:	●							Global	MAC	address	to	TEP	table	●							Global	ARP	table,	associating	MAC	addresses	to	IP	addresses	3.2.5.1							MAC	Address	to	TEP	Tables	When	the	vNIC	of	a	VM	is	attached	to	a	segment/logical	switch,	the	NSX-T	Controller	is	notified	of	the	MAC	address	as	well	as	the	TEP	by	which	this	MAC	address	is	reachable.	Unlike
individual	transport	nodes	that	only	learn	MAC	addresses	corresponding	to	received	traffic,	the	NSX-T	Controller	has	a	global	view	of	all	MAC	addresses	declared	in	the	NSX-T	environment.	The	global	MAC	address	table	can	proactively	populate	the	local	MAC	address	table	of	the	different	transport	nodes	before	they	receive	any	traffic.	Also,	in	the	rare	case	when	transport	node	receives	a	frame	from	a	VM	destined	to	an	unknown	MAC	address,	it	will	send	a	request	to	look	up	this	MAC	address	in	the	global	table	of	the	NSX-T	Controller	while	simultaneously
flooding	the	frame.	Not	all	the	MAC	addresses	present	in	the	data	plane	tables	are	reported	to	the	NSX-T	Controller.	If	a	VM	is	allowed	to	send	traffic	on	a	segment/logical	switch	from	several	source	MAC	addresses,	those	secondary	MAC	addresses	are	not	pushed	to	the	NSX-T	Controller.	Similarly,	the	NSX-T	Controller	is	not	notified	of	MAC	addresses	learned	from	an	Edge	bridge	connected	to	a	physical	layer	2	network.	This	behavior	was	implemented	in	order	to	protect	the	NSX-T	Controller	from	an	injection	of	an	arbitrarily	large	number	of	MAC	addresses
into	in	the	network.	3.2.5.2							ARP	Tables	The	NSX-T	Controller	also	maintains	an	ARP	table	in	order	to	help	implement	an	ARP	suppression	mechanism.	The	NSX	virtual	switch	snoops	DHCP	and	ARP	traffic	to	learn	MAC	address	to	IP	associations.	Those	associations	are	then	reported	to	the	NSX-T	Controller.	An	example	of	the	process	is	summarized	in	Figure	3‑14:	ARP	Suppression.	Figure	3‑14:	ARP	Suppression	Virtual	machine	“vmA”	has	just	finished	a	DHCP	request	sequence	and	been	assigned	IP	address	“IPA”.	The	NSX	virtual	switch	on	“HV1”	reports
the	association	of	the	MAC	address	of	virtual	machine	“vmA”	to	“IPA”	to	the	NSX-T	Controller.	Next,	a	new	virtual	machine	“vmB”	comes	up	on	“HV2”	that	must	communicate	with	“vmA”,	but	its	IP	address	has	not	been	assigned	by	DHCP	and,	as	a	result,	there	has	been	no	DHCP	snooping.	The	virtual	switch	will	be	able	to	learn	this	IP	address	by	snooping	ARP	traffic	coming	from	“vmB”.	Either	“vmB”	will	send	a	gratuitous	ARP	when	coming	up	or	it	will	send	an	ARP	request	for	the	MAC	address	of	“vmA”.	The	virtual	switch	then	can	derive	the	IP	address
“IPB”	associated	to	“vmB”.	The	association	(vmB	->	IPB)	is	then	pushed	to	the	NSX-T	Controller.	The	NSX	virtual	switch	also	holds	the	ARP	request	initiated	by	“vmB”	and	queries	the	NSX-T	Controller	for	the	MAC	address	of	“vmA”.	Because	the	MAC	address	of	“vmA”	has	already	been	reported	to	the	NSX-T	Controller,	the	NSX-T	Controller	can	answer	the	request	coming	from	the	virtual	switch,	which	can	now	send	an	ARP	reply	directly	to	“vmB”	on	the	behalf	of	“vmA”.	Thanks	to	this	mechanism,	the	expensive	flooding	of	an	ARP	request	has	been	eliminated.
Note	that	if	the	NSX-T	Controller	did	not	know	about	the	MAC	address	of	“vmA”	or	if	the	NSX-T	Controller	were	down,	the	ARP	request	from	“vmB”	would	still	be	flooded	by	the	virtual	switch.	3.2.6					Overlay	Encapsulation	NSX-T	uses	Generic	Network	Virtualization	Encapsulation	(Geneve)	for	its	overlay	model.	Geneve	is	currently	an	IETF	Internet	Draft	that	builds	on	the	top	of	VXLAN	concepts	to	provide	enhanced	flexibility	in	term	of	data	plane	extensibility.	Figure	3‑15:	Geneve	Encapsulation	(from	IETF	Draft)	VXLAN	has	static	fields	while	Geneve	offers
flexible	field.	This	capability	can	be	used	by	anyone	to	adjust	the	need	of	typical	workload	and	overlay	fabric,	thus	NSX-T	tunnels	are	only	setup	between	NSX-T	transport	nodes.	NSX-T	only	needs	efficient	support	for	the	Geneve	encapsulation	by	the	NIC	hardware;	most	NIC	vendors	support	the	same	hardware	offload	for	Geneve	as	they	would	for	VXLAN.	Network	virtualization	is	all	about	developing	a	model	of	deployment	that	is	applicable	to	a	variety	of	physical	networks	and	diversity	of	compute	domains.	New	networking	features	are	developed	in	software
and	implemented	without	worry	of	support	on	the	physical	infrastructure.	For	example,	the	data	plane	learning	section	described	how	NSX-T	relies	on	metadata	inserted	in	the	tunnel	header	to	identify	the	source	TEP	of	a	forwarded	frame.	This	metadata	could	not	have	been	added	to	a	VXLAN	tunnel	without	either	hijacking	existing	bits	in	the	VXLAN	header	or	making	a	revision	to	the	VXLAN	specification.	Geneve	allows	any	vendor	to	add	its	own	metadata	in	the	tunnel	header	with	a	simple	Type-Length-Value	(TLV)	model.	NSX-T	defines	a	single	TLV,	with
fields	for:		●							Identifying	the	TEP	that	sourced	a	tunnel	packet	●							A	version	bit	used	during	the	intermediate	state	of	an	upgrade	●							A	bit	indicating	whether	the	encapsulated	frame	is	to	be	traced	●							A	bit	for	implementing	the	two-tier	hierarchical	flooding	mechanism.	When	a	transport	node	receives	a	tunneled	frame	with	this	bit	set,	it	knows	that	it	must	perform	local	replication	to	its	peers	●							Two	bits	identifying	the	type	of	the	source	TEP	These	fields	are	part	of	a	VMware	specific	TLV.	This	TLV	can	be	changed	or	enlarged	by	VMware
independent	of	any	other	vendors.	Similarly,	other	vendors	or	partners	can	insert	their	own	TLVs.	Geneve	benefits	from	the	same	NIC	offloads	as	VXLAN	(the	capability	is	advertised	in	the	VMware	compatibility	list	for	different	NIC	models.)	Because	overlay	tunnels	are	only	setup	between	NSX-T	transport	nodes,	there	is	no	need	for	any	hardware	or	software	third	party	vendor	to	decapsulate	or	look	into	NSX-T	Geneve	overlay	packets.		Thus,	networking	feature	adoption	can	be	done	in	the	overlay,	isolated	from	underlay	hardware	refresh	cycles.	3.3					
Bridging	Overlay	to	VLAN	with	the	Edge	Bridge	Even	in	highly	virtualized	environments,	customers	often	have	workloads	that	cannot	be	virtualized,	because	of	licensing	or	application-specific	reasons.	Even	for	the	virtualized	workload	some	applications	have	embedded	IP	that	cannot	be	changed	or	legacy	application	that	requires	layer	2	connectivity.	Those	VLAN	backed	workloads	typically	communicate	with	overlay	backed	VMs	at	layer	3,	through	gateways	(Tier-0	or	Tier-1)	instantiated	on	the	NSX-T	Edges.	However,	there	are	some	scenarios	where	layer	2
connectivity	is	required	between	VMs	and	physical	devices.	For	this	functionality,	NSX-T	introduces	the	NSX-T	Bridge,	a	service	that	can	be	instantiated	on	an	Edge	for	the	purpose	of	connecting	an	NSX-T	logical	segment	with	a	traditional	VLAN	at	layer	2.	The	most	common	use	cases	for	this	feature	are:	Physical	to	virtual/virtual	to	virtual	migration.	This	is	generally	a	temporary	scenario	where	a	VLAN	backed	environment	is	being	virtualized	to	an	overlay	backed	NSX	data	center.	The	NSX-T	Edge	Bridge	is	a	simple	way	to	maintain	connectivity	between	the
different	components	during	the	intermediate	stages	of	the	migration	process.		Figure	3‑16:	physical	to	virtual	or	virtual	to	virtual	migration	use	case	Integration	of	physical,	non-virtualized	appliances	that	require	L2	connectivity	to	the	virtualized	environment.	The	most	common	example	is	a	database	server	that	requires	L2	connectivity,	typically	because	L3	connectivity	has	not	been	validated	and	is	not	supported	by	the	vendor.	This	could	also	be	the	case	of	a	service	appliance	that	need	to	be	inserted	inline,	like	a	physical	firewall	or	load	balancer.	Figure
3‑17:	integration	of	non-virtualized	appliances	use	case	Whether	it	is	for	migration	purposes	or	for	integration	of	non-virtualized	appliances,	if	L2	adjacency	is	not	needed,	leveraging	a	gateway	on	the	Edges	(L3	connectivity)	is	typically	more	efficient,	as	routing	allows	for	Equal	Cost	Multi	Pathing,	which	results	in	higher	bandwidth	and	a	better	redundancy	model.	A	common	misconception	exists	regarding	the	usage	of	the	edge	bridge,	from	the	fact	that	modern	SDN	based	adoption	must	not	use	bridging.	In	fact,	that	is	not	the	case,	the	Edge	Bridge	can	be
conceived	as	a	permanent	solution	for	extending	overlay-backed	segments	into	VLANs.	The	use	case	of	having	a	permeant	bridging	for	set	of	workloads	exist	due	to	variety	of	reasons	such	as	older	application	cannot	change	IP	address,	end	of	life	gear	does	not	allow	any	change,	regulation,	third	party	connectivity	and	span	of	control	on	those	topologies	or	devices.	However,	as	an	architect	if	one	desired	to	enable	such	use	case	must	consider	some	level	of	dedicated	resources	and	planning	that	ensue,	such	as	bandwidth,	operational	control	and	protection	of
bridged	topologies.	3.3.1					Overview	of	the	Capabilities	The	following	sections	present	the	capabilities	of	the	NSX-T	Edge	Bridge.	3.3.1.1							DPDK-based	performance	One	of	the	main	benefits	of	running	a	Bridge	on	the	NSX-T	Edge	is	the	data	plane	performance.	Indeed,	the	NSX-T	Edge	is	leveraging	the	Data	Plane	Development	Kit	(DPDK),	providing	low	latency,	high	bandwidth	and	scalable	traffic	forwarding	performance.	3.3.1.2							Extend	an	Overlay-backed	Segment/Logical	Switch	to	a	VLAN	In	its	most	simple	representation,	the	only	thing	the	NSX-T
Edge	Bridge	achieves	is	to	convert	an	Ethernet	frame	between	two	different	L2	representations:	overlay	and	VLAN.	In	the	overlay	representation,	the	L2	frame	and	its	payload	are	encapsulated	in	an	IP-based	format	(as	described	above,	NSX-T	Data	Center	currently	leverages	Geneve,	Generic	Network	Virtualization	Encapsulation).	In	the	VLAN	representation,	the	L2	frame	may	include	an	802.1Q	trunk	VLAN	tag	or	be	an	IEE	802.3	frame,	depending	on	the	desired	connectivity	model.	The	Edge	Bridge	is	currently	capable	of	making	a	one-to-one	association
between	an	overlay-backed	Segment	(identified	by	a	Virtual	Network	Identifier	in	the	overlay	header)	and	a	specific	VLAN	ID.	Figure	3‑18:	One-to-one	association	between	segment	and	VLAN	ID	As	of	NSX-T	2.4,	a	segment	can	be	connected	to	only	a	single	Edge	Bridge.	That	means	that	L2	traffic	can	enter	and	leave	the	NSX	overlay	in	a	single	location,	thus	preventing	the	possibility	of	a	loop	between	a	VLAN	and	the	overlay.	It	is	however	possible	to	bridge	several	different	segments	to	the	same	VLAN	ID,	if	those	different	bridging	instances	are	leveraging
separate	Edge	uplinks.	Starting	NSX-T	2.5,	the	same	segment	can	be	attached	to	several	bridges	on	different	Edges.	This	allows	certain	bare	metal	topologies	to	be	connected	with	overlay	segment	and	bridging	to	VLANs	that	can	exist	in	separate	rack	without	depending	on	physical	overlay.	With	NSX-T	3.0,	the	Edge	Bridge	supports	bridging	802.1Q	tagged	traffic	carried	in	an	overlay	backed	segment	(Guest	VLAN	Tagging.)		For	more	information	about	this	feature,	see	the	bridging	white	paper	at:	3.3.1.3							High	Availability	with	Bridge	Instances	The	Edge
Bridge	operates	as	an	active/standby	service.	The	Edge	bridge	active	in	the	data	path	is	backed	by	a	unique,	pre-determined	standby	bridge	on	a	different	Edge.	NSX-T	Edges	are	deployed	in	a	pool	called	an	Edge	Cluster.	Within	an	Edge	Cluster,	the	user	can	create	a	Bridge	Profile,	which	essentially	designates	two	Edges	as	the	potential	hosts	for	a	pair	of	redundant	Bridges.	The	Bridge	Profile	specifies	which	Edge	would	be	primary	(i.e.	the	preferred	host	for	the	active	Bridge)	and	backup	(the	Edge	that	will	host	the	backup	Bridge).	At	the	time	of	the	creation
of	the	Bridge	Profile,	no	Bridge	is	instantiated	yet.	The	Bridge	Profile	is	just	a	template	for	the	creation	of	one	or	several	Bridge	pairs.	Figure	3‑19:	Bridge	Profile,	defining	a	redundant	Edge	Bridge	(primary	and	backup)	Once	a	Bridge	Profile	is	created,	the	user	can	attach	a	segment	to	it.	By	doing	so,	an	active	Bridge	instance	is	created	on	the	primary	Edge,	while	a	standby	Bridge	is	provisioned	on	the	backup	Edge.	NSX	creates	a	Bridge	Endpoint	object,	which	represents	this	pair	of	Bridges.	The	attachment	of	the	segment	to	the	Bridge	Endpoint	is



represented	by	a	dedicated	Logical	Port,	as	shown	in	the	diagram	below:	Figure	3‑20:	Primary	Edge	Bridge	forwarding	traffic	between	segment	and	VLAN	When	associating	a	segment	to	a	Bridge	Profile,	the	user	can	specify	the	VLAN	ID	for	the	VLAN	traffic	as	well	as	the	physical	port	that	will	be	used	on	the	Edge	for	sending/receiving	this	VLAN	traffic.	At	the	time	of	the	creation	of	the	Bridge	Profile,	the	user	can	also	select	the	failover	mode.	In	the	preemptive	mode,	the	Bridge	on	the	primary	Edge	will	always	become	the	active	bridge	forwarding	traffic
between	overlay	and	VLAN	as	soon	as	it	is	available,	usurping	the	function	from	an	active	backup.	In	the	non-preemptive	mode,	the	Bridge	on	the	primary	Edge	will	remain	standby	should	it	become	available	when	the	Bridge	on	the	backup	Edge	is	already	active.	3.3.1.4							Edge	Bridge	Firewall	The	traffic	leaving	and	entering	a	segment	via	a	Bridge	is	subject	to	the	Bridge	Firewall.	Rules	are	defined	on	a	per-segment	basis	and	are	defined	for	the	Bridge	as	a	whole,	i.e.	they	apply	to	the	active	Bridge	instance,	irrespective	of	the	Edge	on	which	it	is	running.
Figure	3‑21:	Edge	Bridge	Firewall	The	firewall	rules	can	leverage	existing	NSX-T	grouping	constructs,	and	there	is	currently	a	single	firewall	section	available	for	those	rules.	3.3.1.5							Seamless	integration	with	NSX-T	gateways	This	part	requires	understanding	of	Tier-0	and	Tier-1	gateway	and	refer	to	the	Logical	Routing	chapter	for	further	understanding	about	Tier-0	and	Tier-1	gateways.	Routing	and	bridging	seamlessly	integrate.	Distributed	routing	is	available	to	segments	extended	to	VLAN	by	a	Bridge.	The	following	diagram	is	a	logical	representation
of	a	possible	configuration	leveraging	T0	and	T1	gateways	along	with	Edge	Bridges.	Figure	3‑22:	Integration	with	routing	In	this	above	example,	VM1,	VM2,	Physical	Servers	1	and	2	have	IP	connectivity.	Remarkably,	through	the	Edge	Bridges,	Tier-1	or	Tier-0	gateways	can	act	as	default	gateways	for	physical	devices.	Note	also	that	the	distributed	nature	of	NSX-T	routing	is	not	affected	by	the	introduction	of	an	Edge	Bridge.	ARP	requests	from	physical	workload	for	the	IP	address	of	an	NSX	router	acting	as	a	default	gateway	will	be	answered	by	the	local
distributed	router	on	the	Edge	where	the	Bridge	is	active.	The	logical	routing	capability	in	the	NSX-T	platform	provides	the	ability	to	interconnect	both	virtual	and	physical	workloads	deployed	in	different	logical	L2	networks.	NSX-T	enables	the	creation	of	network	elements	like	segments	(Layer	2	broadcast	domains)	and	gateways	(routers)	in	software	as	logical	constructs	and	embeds	them	in	the	hypervisor	layer,	abstracted	from	the	underlying	physical	hardware.	Since	these	network	elements	are	logical	entities,	multiple	gateways	can	be	created	in	an
automated	and	agile	fashion.	The	previous	chapter	showed	how	to	create	segments;	this	chapter	focuses	on	how	gateways	provide	connectivity	between	different	logical	L2	networks.	Figure	4‑1:	Logical	and	Physical	View	of	Routing	Services	shows	both	logical	and	physical	view	of	a	routed	topology	connecting	segments/logical	switches	on	multiple	hypervisors.	Virtual	machines	“Web1”	and	“Web2”	are	connected	to	“overlay	Segment	1”	while	“App1”	and	“App2”	are	connected	to	“overlay	Segment	2”.	Figure	4‑1:	Logical	and	Physical	View	of	Routing	Services
In	a	data	center,	traffic	is	categorized	as	East-West	(E-W)	or	North-South	(N-S)	based	on	the	origin	and	destination	of	the	flow.	When	virtual	or	physical	workloads	in	a	data	center	communicate	with	the	devices	external	to	the	data	center	(e.g.,	WAN,	Internet),	the	traffic	is	referred	to	as	North-South	traffic.	The	traffic	between	workloads	confined	within	the	data	center	is	referred	to	as	East-West	traffic.	In	modern	data	centers,	more	than	70%	of	the	traffic	is	East-West.	For	a	multi-tiered	application	where	the	web	tier	needs	to	talk	to	the	app	tier	and	the	app
tier	needs	to	talk	to	the	database	tier	and,	these	different	tiers	sit	in	different	subnets.	Every	time	a	routing	decision	is	made,	the	packet	is	sent	to	a	physical	router.	Traditionally,	a	centralized	router	would	provide	routing	for	these	different	tiers.	With	VMs	that	are	hosted	on	same	the	ESXi	or	KVM	hypervisor,	traffic	will	leave	the	hypervisor	multiple	times	to	go	to	the	centralized	router	for	a	routing	decision,	then	return	to	the	same	hypervisor;	this	is	not	optimal.	NSX-T	is	uniquely	positioned	to	solve	these	challenges	as	it	can	bring	networking	closest	to	the
workload.	Configuring	a	Gateway	via	NSX-T	Manager	instantiates	a	local	distributed	gateway	on	each	hypervisor.	For	the	VMs	hosted	(e.g.,	“Web	1”,	“App	1”)	on	the	same	hypervisor,	the	E-W	traffic	does	not	need	to	leave	the	hypervisor	for	routing.	4.1						Single	Tier	Routing	NSX-T	Gateway	provides	optimized	distributed	routing	as	well	as	centralized	routing	and	services	like	NAT,	AVI	Load	balancer,	DHCP	server	etc.	A	single	tier	routing	topology	implies	that	a	Gateway	is	connected	to	segments	southbound	providing	E-W	routing	and	is	also	connected	to
physical	infrastructure	to	provide	N-S	connectivity.	This	gateway	is	referred	to	as	Tier-0	Gateway.	Tier-0	Gateway	consists	of	two	components:	distributed	routing	component	(DR)	and	centralized	services	routing	component	(SR).	4.1.1					Distributed	Router	(DR)	A	DR	is	essentially	a	router	with	logical	interfaces	(LIFs)	connected	to	multiple	subnets.	It	runs	as	a	kernel	module	and	is	distributed	in	hypervisors	across	all	transport	nodes,	including	Edge	nodes.	The	traditional	data	plane	functionality	of	routing	and	ARP	lookups	is	performed	by	the	logical
interfaces	connecting	to	the	different	segments.	Each	LIF	has	a	vMAC	address	and	an	IP	address	being	the	default	IP	gateway	for	its	connected	segment.	The	IP	address	is	unique	per	LIF	and	remains	the	same	everywhere	the	segment	exists.	The	vMAC	associated	with	each	LIF	remains	constant	in	each	hypervisor,	allowing	the	default	gateway	IP	and	MAC	addresses	to	remain	the	same	during	vMotion.	The	left	side	of	Figure	4‑2:	E-W	Routing	with	Workloads	on	the	Same	Hypervisor	shows	a	logical	topology	with	two	segments,	“Web	Segment”	with	a	default
gateway	of	172.16.10.1/24	and	“App	Segment”	with	a	default	gateway	of	172.16.20.1/24	are	attached	to	Tier-0	Gateway.	In	the	physical	topology	view	on	the	right,	VMs	are	shown	on	two	hypervisors,	“HV1”	and	“HV2”.		A	distributed	routing	(DR)	component	for	this	Tier-0	Gateway	is	instantiated	as	a	kernel	module	and	will	act	as	a	local	gateway	or	first	hop	router	for	the	workloads	connected	to	the	segments.	Please	note	that	the	DR	is	not	a	VM	and	the	DR	on	both	hypervisors	has	the	same	IP	addresses.	Figure	4‑2:	E-W	Routing	with	Workloads	on	the	Same
Hypervisor	East-West	Routing	-	Distributed	Routing	with	Workloads	on	the	Same	Hypervisor	In	this	example,	“Web1”	VM	is	connected	to	“Web	Segment”	and	“App1”	is	connected	to	“App-Segment”	and	both	VMs	are	hosted	on	the	same	hypervisor.	Since	“Web1”	and	“App1”	are	both	hosted	on	hypervisor	“HV1”,	routing	between	them	happens	on	the	DR	located	on	that	same	hypervisor.	Figure	4‑3:	Packet	Flow	between	two	VMs	on	Same	Hypervisor	presents	the	logical	packet	flow	between	two	VMs	on	the	same	hypervisor.	Figure	4‑3:	Packet	Flow	between
two	VMs	on	Same	Hypervisor	“Web1”	(172.16.10.11)	sends	a	packet	to	“App1”	(172.16.20.11).	The	packet	is	sent	to	the	default	gateway	interface	(172.16.10.1)	for	“Web1”	located	on	the	local	DR.	The	DR	on	“HV1”	performs	a	routing	lookup	which	determines	that	the	destination	subnet	172.16.20.0/24	is	a	directly	connected	subnet	on	“LIF2”.	A	lookup	is	performed	in	the	“LIF2”	ARP	table	to	determine	the	MAC	address	associated	with	the	IP	address	for	“App1”.	If	the	ARP	entry	does	not	exist,	the	controller	is	queried.	If	there	is	no	response	from	controller,
an	ARP	request	is	flooded	to	learn	the	MAC	address	of	“App1”.	Once	the	MAC	address	of	“App1”	is	learned,	the	L2	lookup	is	performed	in	the	local	MAC	table	to	determine	how	to	reach	“App1”	and	the	packet	is	delivered	to	the	App1	VM.	The	return	packet	from	“App1”	follows	the	same	process	and	routing	would	happen	again	on	the	local	DR.	In	this	example,	neither	the	initial	packet	from	“Web1”	to	“App1”	nor	the	return	packet	from	“App1”	to	“Web1”	left	the	hypervisor.	East-West	Routing	-	Distributed	Routing	with	Workloads	on	Different	Hypervisor	In	this
example,	the	target	workload	“App2”	differs	as	it	rests	on	a	hypervisor	named	“HV2”.	If	“Web1”	needs	to	communicate	with	“App2”,	the	traffic	would	have	to	leave	the	hypervisor	“HV1”	as	these	VMs	are	hosted	on	two	different	hypervisors.	Figure	4‑4:	E-W	Packet	Flow	between	two	Hypervisors	shows	a	logical	view	of	topology,	highlighting	the	routing	decisions	taken	by	the	DR	on	“HV1”	and	the	DR	on	“HV2”.	When	“Web1”	sends	traffic	to	“App2”,	routing	is	done	by	the	DR	on	“HV1”.	The	reverse	traffic	from	“App2”	to	“Web1”	is	routed	by	DR	on	“HV2”.
Routing	is	performed	on	the	hypervisor	attached	to	the	source	VM.	Figure	4‑4:	E-W	Packet	Flow	between	two	Hypervisors	Figure	4‑5:	End-to-end	E-W	Packet	Flow	shows	the	corresponding	physical	topology	and	packet	walk	from	“Web1”	to	“App2”.	Figure	4‑5:	End-to-end	E-W	Packet	Flow	“Web1”	(172.16.10.11)	sends	a	packet	to	“App2”	(172.16.20.12).	The	packet	is	sent	to	the	default	gateway	interface	(172.16.10.1)	for	“Web1”	located	on	the	local	DR.	Its	L2	header	has	the	source	MAC	as	“MAC1”	and	destination	MAC	as	the	vMAC	of	the	DR.	This	vMAC	will
be	the	same	for	all	LIFs.	The	routing	lookup	happens	on	the	HV1	DR,	which	determines	that	the	destination	subnet	172.16.20.0/24	is	a	directly	connected	subnet	on	“LIF2”.	A	lookup	is	performed	in	the	“LIF2”	ARP	table	to	determine	the	MAC	address	associated	with	the	IP	address	for	“App2”.	This	destination	MAC,	“MAC2”,	is	learned	via	the	remote	HV2	TEP	20.20.20.20.	HV1	TEP	encapsulates	the	original	packet	and	sends	it	to	the	HV2	TEP	with	a	source	IP	address	of	10.10.10.10	and	destinations	IP	address	of	20.20.20.20	for	the	encapsulating	packet.	The
destination	virtual	network	identifier	(VNI)	in	the	Geneve	encapsulated	packet	belongs	to	“App	Segment”.	HV2	TEP	20.20.20.20	decapsulates	the	packet,	removing	the	outer	header	upon	reception.	It	performs	an	L2	lookup	in	the	local	MAC	table	associated	with	“LIF2”.	Packet	is	delivered	to	“App2”	VM.	The	return	packet	from	“App2”	destined	for	“Web1”	goes	through	the	same	process.	For	the	return	traffic,	the	routing	lookup	happens	on	the	HV2	DR.	This	represents	the	normal	behavior	of	the	DR,	which	is	to	always	perform	routing	on	the	DR	instance
running	in	the	kernel	of	the	hypervisor	hosting	the	workload	that	initiates	the	communication.	After	the	routing	lookup,	the	packet	is	encapsulated	by	the	HV2	TEP	and	sent	to	the	remote	HV1	TEP.	The	HV1	decapsulates	the	Geneve	packet	and	delivers	the	encapsulated	frame	from	“App2”	to	“Web1”.	4.1.2					Services	Router	East-West	routing	is	completely	distributed	in	the	hypervisor,	with	each	hypervisor	in	the	transport	zone	running	a	DR	in	its	kernel.	However,	some	services	of	NSX-T	are	not	distributed,	due	to	its	locality	or	stateful	nature	such	as:	●						
Physical	infrastructure	connectivity	(BGP	Routing	with	Address	Families	–	VRF	lite)	●							NAT	●							DHCP	server	●							VPN	●							Gateway	Firewall	●							Bridging	●							Service	Interface	●							Metadata	Proxy	for	OpenStack	A	services	router	(SR)	is	instantiated	on	an	edge	cluster	when	a	service	is	enabled	that	cannot	be	distributed	on	a	gateway.	A	centralized	pool	of	capacity	is	required	to	run	these	services	in	a	highly	available	and	scaled-out	fashion.	The	appliances	where	the	centralized	services	or	SR	instances	are	hosted	are	called	Edge	nodes.	An	Edge
node	is	the	appliance	that	provides	connectivity	to	the	physical	infrastructure.	Left	side	of	Figure	4‑6:	Logical	Router	Components	and	Interconnection	shows	the	logical	view	of	a	Tier-0	Gateway	showing	both	DR	and	SR	components	when	connected	to	a	physical	router.	Right	side	of	Figure	4‑6:	Logical	Router	Components	and	Interconnection	shows	how	the	components	of	Tier-0	Gateway	are	realized	on	Compute	hypervisor	and	Edge	node.	Note	that	the	compute	host	(i.e.	HV1)	has	just	the	DR	component	and	the	Edge	node	shown	on	the	right	has	both	the	SR
and	DR	components.	SR/DR	forwarding	table	merge	has	been	done	to	address	future	use-cases.	SR	and	DR	functionality	remains	the	same	after	SR/DR	merge	in	NSX-T	2.4	release,	but	with	this	change	SR	has	direct	visibility	into	the	overlay	segments.	Notice	that	all	the	overlay	segments	are	attached	to	the	SR	as	well.	Figure	4‑6:	Logical	Router	Components	and	Interconnection	A	Tier-0	Gateway	can	have	following	interfaces:	●							External	Interface	–	Interface	connecting	to	the	physical	infrastructure/router.	Static	routing	and	BGP	are	supported	on	this
interface.	This	interface	was	referred	to	as	uplink	interface	in	previous	releases.	This	interface	can	also	be	used	to	extend	a	VRF	(Virtual	routing	and	forwarding	instance)	from	the	physical	networking	fabric	into	the	NSX	domain.	●							Service	Interface:	Interface	connecting	VLAN	segments	to	provide	connectivity	and	services	to	VLAN	backed	physical	or	virtual	workloads.	Service	interface	can	also	be	connected	to	overlay	segments	for	Tier-1	standalone	load	balancer	use-cases	explained	in	Load	balancer	Chapter	6	.	This	interface	was	referred	to	as
centralized	service	port	(CSP)	in	previous	releases.	Note	that	a	gateway	must	have	a	SR	component	to	realize	service	interface.		NSX-T	3.0	supports	static	and	dynamic	routing	over	this	interface.	●							Linked	Segments	–	Interface	connecting	to	an	overlay	segment.	This	interface	was	referred	to	as	downlink	interface	in	previous	releases.	Static	routing	is	supported	over	that	interface	●							Intra-Tier	Transit	Link	(Internal	link	between	the	DR	and	SR).	A	transit	overlay	segment	is	auto	plumbed	between	DR	and	SR	and	each	end	gets	an	IP	address	assigned	in
169.254.0.0/24	subnet	by	default.	This	address	range	is	configurable	only	when	creating	the	Tier-0	gateway.	As	mentioned	previously,	connectivity	between	DR	on	the	compute	host	and	SR	on	the	Edge	node	is	auto	plumbed	by	the	system.	Both	the	DR	and	SR	get	an	IP	address	assigned	in	169.254.0.0/24	subnet	by	default.	The	management	plane	also	configures	a	default	route	on	the	DR	with	the	next	hop	IP	address	of	the	SR’s	intra-tier	transit	link	IP.	This	allows	the	DR	to	take	care	of	E-W	routing	while	the	SR	provides	N-S	connectivity.	North-South	Routing
by	SR	Hosted	on	Edge	Node	From	a	physical	topology	perspective,	workloads	are	hosted	on	hypervisors	and	N-S	connectivity	is	provided	by	Edge	nodes.	If	a	device	external	to	the	data	center	needs	to	communicate	with	a	virtual	workload	hosted	on	one	of	the	hypervisors,	the	traffic	would	have	to	come	to	the	Edge	nodes	first.	This	traffic	will	then	be	sent	on	an	overlay	network	to	the	hypervisor	hosting	the	workload.	Figure	4‑7:	N-S	Routing	Packet	Flow	shows	the	traffic	flow	from	a	VM	in	the	data	center	to	an	external	physical	infrastructure.	Figure	4‑7:	N-S
Routing	Packet	Flow	Figure	4‑8:	End-to-end	Packet	Flow	–	Application	“Web1”	to	External	shows	a	detailed	packet	walk	from	data	center	VM	“Web1”	to	a	device	on	the	L3	physical	infrastructure.	As	discussed	in	the	E-W	routing	section,	routing	always	happens	closest	to	the	source.	In	this	example,	eBGP	peering	has	been	established	between	the	physical	router	interface	with	the	IP	address	192.168.240.1	and	the	Tier-0	Gateway	SR	component	hosted	on	the	Edge	node	with	an	external	interface	IP	address	of	192.168.240.3.	Tier-0	Gateway	SR	has	a	BGP	route
for	192.168.100.0/24	prefix	with	a	next	hop	of	192.168.240.1	and	the	physical	router	has	a	BGP	route	for	172.16.10.0/24	with	a	next	hop	of	192.168.240.3.	Figure	4‑8:	End-to-end	Packet	Flow	–	Application	“Web1”	to	External	“Web1”	(172.16.10.11)	sends	a	packet	to	192.168.100.10.	The	packet	is	sent	to	the	“Web1”	default	gateway	interface	(172.16.10.1)	located	on	the	local	DR.	The	packet	is	received	on	the	local	DR.	DR	doesn’t	have	a	specific	connected	route	for	192.168.100.0/24	prefix.	The	DR	has	a	default	route	with	the	next	hop	as	its	corresponding	SR,
which	is	hosted	on	the	Edge	node.	The	HV1	TEP	encapsulates	the	original	packet	and	sends	it	to	the	Edge	node	TEP	with	a	source	IP	address	of	10.10.10.10	and	destination	IP	address	of	30.30.30.30.	The	Edge	node	is	also	a	transport	node.	It	will	encapsulate/decapsulate	the	traffic	sent	to	or	received	from	compute	hypervisors.	The	Edge	node	TEP	decapsulates	the	packet,	removing	the	outer	header	prior	to	sending	it	to	the	SR.	The	SR	performs	a	routing	lookup	and	determines	that	the	route	192.168.100.0/24	is	learned	via	external	interface	with	a	next	hop
IP	address	192.168.240.1.	The	packet	is	sent	on	the	VLAN	segment	to	the	physical	router	and	is	finally	delivered	to	192.168.100.10.	Observe	that	routing	and	ARP	lookup	happens	on	the	DR	hosted	on	the	HV1	hypervisor	to	determine	that	the	packet	must	be	sent	to	the	SR.	On	the	edge	node,	the	packet	is	directly	sent	to	the	SR	after	the	tunnel	encapsulation	has	been	removed.	Figure	4‑9:	End-to-end	Packet	Flow	–	External	to	Application	“Web1”	follows	the	packet	walk	for	the	reverse	traffic	from	an	external	device	to	“Web1”.	Figure	4‑9:	End-to-end	Packet
Flow	–	External	to	Application	“Web1”	An	external	device	(192.168.100.10)	sends	a	packet	to	“Web1”	(172.16.10.11).	The	packet	is	routed	by	the	physical	router	and	sent	to	the	external	interface	of	Tier-0	Gateway	hosted	on	Edge	node.	A	single	routing	lookup	happens	on	the	Tier-0	Gateway	SR	which	determines	that	172.16.10.0/24	is	a	directly	connected	subnet	on	“LIF1”.	A	lookup	is	performed	in	the	“LIF1”	ARP	table	to	determine	the	MAC	address	associated	with	the	IP	address	for	“Web1”.	This	destination	MAC	“MAC1”	is	learned	via	the	remote	TEP
(10.10.10.10),	which	is	the	“HV1”	host	where	“Web1”	is	located.	The	Edge	TEP	encapsulates	the	original	packet	and	sends	it	to	the	remote	TEP	with	an	outer	packet	source	IP	address	of	30.30.30.30	and	destination	IP	address	of	10.10.10.10.	The	destination	VNI	in	this	Geneve	encapsulated	packet	is	of	“Web	Segment”.	The	HV1	host	decapsulates	the	packet	and	removes	the	outer	header	upon	receiving	the	packet.	An	L2	lookup	is	performed	in	the	local	MAC	table	associated	with	“LIF1”.	The	packet	is	delivered	to	Web1.	This	time	routing	and	ARP	lookup
happened	on	the	merged	SR/DR	hosted	on	the	Edge	node.	No	such	lookup	was	required	on	the	DR	hosted	on	the	HV1	hypervisor,	and	packet	was	sent	directly	to	the	VM	after	removing	the	tunnel	encapsulation	header.	Figure	4‑9:	End-to-end	Packet	Flow	–	External	to	Application	“Web1”	showed	a	Tier-0	gateway	with	one	external	interface	that	leverages	Edge	node	to	connect	to	physical	infrastructure.	If	this	Edge	node	goes	down,	N-S	connectivity	along	with	other	centralized	services	running	on	Edge	node	will	go	down	as	well.	To	provide	redundancy	for
centralized	services	and	N-S	connectivity,	it	is	recommended	to	deploy	a	minimum	of	two	edge	nodes.	High	availability	modes	are	discussed	in	section	4.6.	4.2						Two-Tier	Routing	In	addition	to	providing	optimized	distributed	and	centralized	routing	functions,	NSX-T	supports	a	multi-tiered	routing	model	with	logical	separation	between	different	gateways	within	the	NSX-T	infrastructure.	The	top-tier	gateway	is	referred	to	as	a	Tier-0	gateway	while	the	bottom-tier	gateway	is	a	Tier-1	gateway.	This	structure	gives	complete	control	and	flexibility	over	services
and	policies.	Various	stateful	services	can	be	hosted	on	the	Tier-1	while	the	Tier-0	can	operate	in	an	active-active	manner.	Configuring	two	tier	routing	is	not	mandatory.	It	can	be	single	tiered	as	shown	in	the	previous	section.	Figure	4‑10:	Two	Tier	Routing	and	Scope	of	Provisioning	presents	an	NSX-T	two-tier	routing	architecture.			Figure	4‑10:	Two	Tier	Routing	and	Scope	of	Provisioning	Northbound,	the	Tier-0	gateway	connects	to	one	or	more	physical	routers/L3	switches	and	serves	as	an	on/off	ramp	to	the	physical	infrastructure.	Southbound,	the	Tier-0
gateway	connects	to	one	or	more	Tier-1	gateways	or	directly	to	one	or	more	segments	as	shown	in	North-South	routing	section.	Northbound,	the	Tier-1	gateway	connects	to	a	Tier-0	gateway	using	a	RouterLink	port.	Southbound,	it	connects	to	one	or	more	segments	using	downlink	interfaces.	Concepts	of	DR/SR	discussed	in	the	section	4.1	remain	the	same	for	multi-tiered	routing.	Like	Tier-0	gateway,	when	a	Tier-1	gateway	is	created,	a	distributed	component	(DR)	of	the	Tier-1	gateway	is	intelligently	instantiated	on	the	hypervisors	and	Edge	nodes.	Before
enabling	a	centralized	service	on	a	Tier-0	or	Tier-1	gateway,	an	edge	cluster	must	be	configured	on	this	gateway.	When	you	configure	a	Tier1	GW,	it's	when	you	configure	an	Edge	cluster	that	the	Tier-1	GW	will	have	an	SR.	Configuring	an	Edge	cluster	on	a	Tier-0	gateway	does	not	automatically	instantiate	a	Tier-0	service	component	(SR),	the	service	component	(SR)	will	only	be	created	on	a	specific	edge	node	along	with	the	external	interface	creation.	Unlike	the	Tier-0	gateway,	the	Tier-1	gateway	does	not	support	northbound	connectivity	to	the	physical
infrastructure.	A	Tier-1	gateway	can	only	connect	northbound	to:	a	Tier-0	gateway,	a	service	port,	this	is	used	to	connect	a	one-arm	load-balancer	to	a	segment.	More	details	are	available	in	Chapter	6.	Note	that	connecting	Tier-1	to	Tier-0	is	a	one-click	configuration	or	one	API	call	configuration	regardless	of	components	instantiated	(DR	and	SR)	for	that	gateway.	4.2.1					Interface	Types	on	Tier-1	and	Tier-0	Gateway	External	and	Service	interfaces	were	previously	introduced	in	the	services	router	section.	Figure	4‑11:	Anatomy	of	Components	with	Logical
Routing	shows	these	interfaces	types	along	with	a	new	“RouterLink”	interface	in	a	two-tiered	topology.				Figure	4‑11:	Anatomy	of	Components	with	Logical	Routing	●							External	Interface:	Interface	connecting	to	the	physical	infrastructure/router.	Static	routing	and	BGP	are	supported	on	this	interface.	This	interface	only	exists	on	Tier-0	gateway.	This	interface	was	referred	to	as	Uplink	interface	in	previous	releases.	This	interface	type	will	also	be	used	to	extend	a	VRF	(Virtual	Routing	and	Forwarding)	from	the	physical	networking	fabric	into	the	NSX
domain.	●							RouterLink	Interface/Linked	Port:	Interface	connecting	Tier-0	and	Tier-1	gateways.	Each	Tier-0-to-Tier-1	peer	connection	is	provided	a	/31	subnet	within	the	100.64.0.0/16	reserved	address	space	(RFC6598).	This	link	is	created	automatically	when	the	Tier-0	and	Tier-1	gateways	are	connected.	This	subnet	can	be	changed	when	the	Tier-0	gateway	is	being	created.	It	is	not	possible	to	change	it	afterward.	●							Service	Interface:	Interface	connecting	VLAN	segments	to	provide	connectivity	to	VLAN	backed	physical	or	virtual	workloads.	Service
interface	can	also	be	connected	to	overlay/VLAN	segments	for	standalone	load	balancer	use	cases	explained	in	load	balancer	Chapter	6.	Service	Interface	supports	static	and	dynamic	routing	starting	with	NSX-T	3.0.	It	is	supported	on	both	Tier-0	and	Tier-1	gateways	configured	in	Active/Standby	high-availability	configuration	mode	explained	in	section	4.6.2.	Note	that	a	Tier-0	or	Tier-1	gateway	must	have	an	SR	component	to	realize	service	interfaces.	This	interface	was	referred	to	as	centralized	service	interface	in	previous	releases.	●							Loopback:	Tier-0
gateway	supports	the	loopback	interfaces.	A	Loopback	interface	is	a	virtual	interface,	and	it	can	be	redistributed	into	a	routing	protocol.	4.2.2					Route	Types	on	Tier-0	and	Tier-1	Gateways	There	is	no	dynamic	routing	between	Tier-0	and	Tier-1	gateways.	The	NSX-T	platform	takes	care	of	the	auto-plumbing	between	Tier-0	and	Tier-1	gateways.	The	following	list	details	route	types	on	Tier-0	and	Tier-1	gateways.	●							Tier-0	Gateway	○							Connected	–	Connected	routes	on	Tier-0	include	external	interface	subnets,	service	interface	subnets,	loopback	and
segment	subnets	connected	to	Tier-0.	In	Figure	4‑12:	Routing	Advertisement,	172.16.20.0/24	(Connected	segment),	192.168.20.0/24	(Service	Interface)	and	192.168.240.0/24	(External	interface)	are	connected	routes	for	the	Tier-0	gateway.	○							Static	–	User	configured	static	routes	on	Tier-0.	○							NAT	IP	–	NAT	IP	addresses	owned	by	the	Tier-0	gateway	discovered	from	NAT	rules	configured	on	Tier-0	Gateway.	○							BGP	–	Routes	learned	via	BGP	neighbors.	○							IPsec	Local	IP	–	Local	IPsec	endpoint	IP	address	for	establishing	VPN	sessions.	○							DNS
Forwarder	IP	–	Listener	IP	for	DNS	queries	from	clients.	Also	used	as	the	source	IP	to	forward	DNS	queries	to	the	upstream	DNS	server.	○							Inter	SR.	SRs	of	a	same	Tier-0	gateway	in	the	same	edge	cluster	will	create	an	automatic	iBGP	peering	adjacency	between	them	to	exchange	routing	information.	This	topology	is	only	supported	with	Active/Active	topologies	and	with	NSX-T	Federation.	●							Tier-1	Gateway	○							Connected	–	Connected	routes	on	Tier-1	include	segment	subnets	connected	to	Tier-1	and	service	interface	subnets	configured	on	Tier-1
gateway.	In	Figure	4‑12:	Routing	Advertisement,	172.16.10.0/24	(Connected	segment)	and	192.168.10.0/24	(Service	Interface)	are	connected	routes	for	Tier-1	gateway.	○							Static–	User	configured	static	routes	on	Tier-1	gateway.	○							NAT	IP	–	NAT	IP	addresses	owned	by	the	Tier-1	gateway	discovered	from	NAT	rules	configured	on	the	Tier-1	gateway.	○							LB	VIP	–	IP	address	of	load	balancing	virtual	server.	○							LB	SNAT	–	IP	address	or	a	range	of	IP	addresses	used	for	Source	NAT	by	load	balancer.	○							IPsec	Local	IP	–	Local	IPsec	endpoint	IP	address
for	establishing	VPN	sessions.	○							DNS	Forwarder	IP	–	Listener	IP	for	DNS	queries	from	clients.	Also	used	as	the	source	IP	to	forward	DNS	queries	to	the	upstream	DNS	server.	Route	Advertisement	on	the	Tier-1	and	Tier-0	Logical	Router	The	Tier-0	gateway	could	use	static	routing	or	BGP	to	connect	to	the	physical	routers.	The	Tier-1	gateway	cannot	connect	to	physical	routers	directly;	it	must	connect	to	a	Tier-0	gateway	to	provide	N-S	connectivity	to	the	subnets	attached	to	it.	When	a	Tier-1	gateway	is	connected	to	a	Tier-0	gateway,	a	default	route	is
automatically	created	on	the	Tier-1.	That	default	route	is	pointing	to	the	RouterLink	IP	address	that	is	owned	by	the	Tier-0.	Figure	4‑12:	Routing	Advertisement	explains	the	route	advertisement	on	both	the	Tier-1	and	Tier-0	gateway.				Figure	4‑12:	Routing	Advertisement	“Tier-1	Gateway”	advertises	connected	routes	to	Tier-0	Gateway.	Figure	4‑12:	Routing	Advertisement	shows	an	example	of	connected	routes	(172.16.10.0/24	and	192.168.10.0/24).	If	there	are	other	route	types,	like	NAT	IP	etc.	as	discussed	in	section	4.2.2	a	user	can	advertise	those	route
types	as	well.	As	soon	as	“Tier-1	Gateway”	is	connected	to	“Tier-0	Gateway”,	the	management	plane	configures	a	default	route	on	“Tier-1	Gateway”	with	next	hop	IP	address	as	RouterLink	interface	IP	of	“Tier-0	Gateway”	i.e.	100.64.224.0/31	in	the	example	above.	Tier-0	Gateway	sees	172.16.10.0/24	and	192.168.10.1/24	as	Tier-1	Connected	routes	(t1c)	with	a	next	hop	of	100.64.224.1/31.	Tier-0	Gateway	also	has	Tier-0	“Connected”	routes	(172.16.20.0/24)	in	Figure	4‑12:	Routing	Advertisement.	Northbound,	“Tier-0	Gateway”	redistributes	the	Tier-0	connected
and	Tier-1	connected	routes	in	BGP	and	advertises	these	routes	to	its	BGP	neighbor,	the	physical	router.	4.2.3					Fully	Distributed	Two	Tier	Routing	NSX-T	provides	a	fully	distributed	routing	architecture.	The	motivation	is	to	provide	routing	functionality	closest	to	the	source.	NSX-T	leverages	the	same	distributed	routing	architecture	discussed	in	distributed	router	section	and	extends	that	to	multiple	tiers.	Figure	4‑13:	Logical	Routing	Instances	shows	both	logical	and	per	transport	node	views	of	two	Tier-1	gateways	serving	two	different	tenants	and	a	Tier-0
gateway.	Per	transport	node	view	shows	that	the	distributed	component	(DR)	for	Tier-0	and	the	Tier-1	gateways	have	been	instantiated	on	two	hypervisors.			Figure	4‑13:	Logical	Routing	Instances	If	“VM1”	in	tenant	1	needs	to	communicate	with	“VM3”	in	tenant	2,	routing	happens	locally	on	hypervisor	“HV1”.	This	eliminates	the	need	to	route	of	traffic	to	a	centralized	location	to	route	between	different	tenants	or	environments.	Multi-Tier	Distributed	Routing	with	Workloads	on	the	same	Hypervisor	The	following	list	provides	a	detailed	packet	walk	between
workloads	residing	in	different	tenants	but	hosted	on	the	same	hypervisor.	“VM1”	(172.16.10.11)	in	tenant	1	sends	a	packet	to	“VM3”	(172.16.201.11)	in	tenant	2.	The	packet	is	sent	to	its	default	gateway	interface	located	on	tenant	1,	the	local	Tier-1	DR.	Routing	lookup	happens	on	the	tenant	1	Tier-1	DR	and	the	packet	is	routed	to	the	Tier-0	DR	following	the	default	route.	This	default	route	has	the	RouterLink	interface	IP	address	(100.64.224.0/31)	as	a	next	hop.	Routing	lookup	happens	on	the	Tier-0	DR.	It	determines	that	the	172.16.201.0/24	subnet	is
learned	from	the	tenant	2	Tier-1	DR	(100.64.224.3/31)	and	the	packet	is	routed	there.	Routing	lookup	happens	on	the	tenant	2	Tier-1	DR.	This	determines	that	the	172.16.201.0/24	subnet	is	directly	connected.	L2	lookup	is	performed	in	the	local	MAC	table	to	determine	how	to	reach	“VM3”	and	the	packet	is	sent.	The	reverse	traffic	from	“VM3”	follows	the	similar	process.	A	packet	from	“VM3”	to	destination	172.16.10.11	is	sent	to	the	tenant-2	Tier-1	DR,	then	follows	the	default	route	to	the	Tier-0	DR.	The	Tier-0	DR	routes	this	packet	to	the	tenant	1	Tier-1	DR
and	the	packet	is	delivered	to	“VM1”.	During	this	process,	the	packet	never	left	the	hypervisor	to	be	routed	between	tenants.	Multi-Tier	Distributed	Routing	with	Workloads	on	different	Hypervisors	Figure	4‑14:	Logical	Routing	End-to-end	Packet	Flow	Between	Hypervisor	shows	the	packet	flow	between	workloads	in	different	tenants	which	are	also	located	on	different	hypervisors.	Figure	4‑14:	Logical	Routing	End-to-end	Packet	Flow	Between	Hypervisor	The	following	list	provides	a	detailed	packet	walk	between	workloads	residing	in	different	tenants	and
hosted	on	the	different	hypervisors.	“VM1”	(172.16.10.11)	in	tenant	1	sends	a	packet	to	“VM2”	(172.16.200.11)	in	tenant	2.	VM1	sends	the	packet	to	its	default	gateway	interface	located	on	the	local	Tier-1	DR	in	HV1.	Routing	lookup	happens	on	the	tenant	1	Tier-1	DR	and	the	packet	follows	the	default	route	to	the	Tier-0	DR	with	a	next	hop	IP	of	100.64.224.0/31.	Routing	lookup	happens	on	the	Tier-0	DR	which	determines	that	the	172.16.200.0/24	subnet	is	learned	via	the	tenant	2	Tier-1	DR	(100.64.224.3/31)	and	the	packet	is	routed	accordingly.	Routing
lookup	happens	on	the	tenant	2	Tier-1	DR	which	determines	that	the	172.16.200.0/24	subnet	is	a	directly	connected	subnet.	A	lookup	is	performed	in	ARP	table	to	determine	the	MAC	address	associated	with	the	“VM2”	IP	address.	This	destination	MAC	is	learned	via	the	remote	TEP	on	hypervisor	“HV2”.	The	“HV1”	TEP	encapsulates	the	packet	and	sends	it	to	the	“HV2”	TEP,	finally	leaving	the	host.	The	“HV2”	TEP	decapsulates	the	packet	and	recognize	the	VNI	in	the	Geneve	header.	A	L2	lookup	is	performed	in	the	local	MAC	table	associated	to	the	LIF	where
“VM2”	is	connected.	The	packet	is	delivered	to	“VM2”.	The	return	packet	follows	the	same	process.	A	packet	from	“VM2”	gets	routed	to	the	local	hypervisor	Tier-1	DR	and	is	sent	to	the	Tier-0	DR.	The	Tier-0	DR	routes	this	packet	to	tenant	1	Tier-1	DR	which	performs	the	L2	lookup	to	find	out	that	the	MAC	associated	with	“VM1”	is	on	remote	hypervisor	“HV1”.	The	packet	is	encapsulated	by	“HV2”	and	sent	to	“HV1”,	where	this	packet	is	decapsulated	and	delivered	to	“VM1".	It	is	important	to	notice	that	in	this	use	case,	routing	is	performed	locally	on	the
hypervisor	hosting	the	VM	sourcing	the	traffic.	4.3						Routing	Capabilities	NSX-T	supports	static	routing	and	the	dynamic	routing	protocol	BGP	on	Tier-0	Gateways	for	IPv4	and	IPv6	workloads.	In	addition	to	static	routing	and	BGP,	Tier-0	gateway	also	supports	a	dynamically	created	iBGP	session	between	its	Services	router	component.	This	feature	is	referred	as	Inter-SR	routing	and	is	available	for	active-active	Tier-0	topologies	only.		Tier-1	Gateways	support	static	routes	but	do	not	support	any	dynamic	routing	protocols.	4.3.1					Static	Routing	Northbound,
static	routes	can	be	configured	on	Tier-1	gateways	with	the	next	hop	IP	as	the	Routerlink	IP	of	the	Tier-0	gateway	(100.64.0.0/16	range	or	a	range	defined	by	user	for	Routerlink	interface).	Southbound,	static	routes	can	also	be	configured	on	Tier-1	gateway	with	a	next	hop	as	a	layer	3	device	reachable	via	Service	interface.	Tier-0	gateways	can	be	configured	with	a	static	route	toward	external	subnets	with	a	next	hop	IP	of	the	physical	router.	Southbound,	static	routes	can	be	configured	on	Tier-0	gateways	with	a	next	hop	of	a	layer	3	device	reachable	via
Service	interface.	ECMP	is	supported	with	static	routes	to	provide	load	balancing,	increased	bandwidth,	and	fault	tolerance	for	failed	paths	or	Edge	nodes.	Figure	4‑15:	Static	Routing	Configuration	shows	a	Tier-0	gateway	with	two	external	interfaces	leveraging	Edge	node,	EN1	and	EN2	connected	to	two	physical	routers.	Two	equal	cost	static	default	routes	configured	for	ECMP	on	Tier-0	Gateway.	Up	to	eight	paths	are	supported	in	ECMP.	The	current	hash	algorithm	for	ECMP	is	two-tuple,	based	on	source	and	destination	IP	of	the	traffic.	Figure	4‑15:	Static
Routing	Configuration	BFD	can	also	be	enabled	for	faster	failure	detection	of	next	hop	and	is	configured	in	the	static	route.	In	NSX-T	3.0,	BFD	keep	alive	TX/RX	timer	can	range	from	a	minimum	of	50ms	(for	Bare	Metal	Edge	Node)	to	maximum	of	10,000ms.	Default	BFD	keep	alive	TX/RX	timers	are	set	to	500ms	with	three	retries.	4.3.2					Dynamic	Routing	BGP	is	the	de	facto	protocol	on	the	WAN	and	in	most	modern	data	centers.	A	typical	leaf-spine	topology	has	eBGP	running	between	leaf	switches	and	spine	switches.	Tier-0	gateways	support	eBGP	and	iBGP
on	the	external	interfaces	with	physical	routers.	BFD	can	also	be	enabled	per	BGP	neighbor	for	faster	failover.	BFD	timers	depend	on	the	Edge	node	type.	Bare	metal	Edge	supports	a	minimum	of	50ms	TX/RX	BFD	keep	alive	timer	while	the	VM	form	factor	Edge	supports	a	minimum	of	500ms	TX/RX	BFD	keep	alive	timer.	With	NSX-T	3.0	release,	the	following	BGP	features	are	supported:	●							Two	and	four	bytes	AS	numbers	in	asplain,	asdot	and	asdot+	format.	●							eBGP	multi-hop	support,	allowing	eBGP	peering	to	be	established	on	loopback	interfaces.
●							iBGP	●							eBGP	multi-hop	BFD	●							ECMP	support	with	BGP	neighbors	in	same	or	different	AS	numbers.	(Multi-path	relax)	●							BGP	Allow	AS	in	●							BGP	route	aggregation	support	with	the	flexibility	of	advertising	a	summary	route	only	to	the	BGP	peer	or	advertise	the	summary	route	along	with	specific	routes.	A	more	specific	route	must	be	present	in	the	routing	table	to	advertise	a	summary	route.	●							Route	redistribution	in	BGP	to	advertise	Tier-0	and	Tier-1	Gateway	internal	routes	as	mentioned	in	section	4.2.2.	●							Inbound/outbound	route
filtering	with	BGP	peer	using	prefix-lists	or	route-maps.	●							Influencing	BGP	path	selection	by	setting	Weight,	Local	preference,	AS	Path	Prepend,	or	MED.	●							Standard,	Extended	and	Large	BGP	community	support.	●							BGP	well-known	community	names	(e.g.,	no-advertise,	no-export,	no-export-subconfed)	can	also	be	included	in	the	BGP	route	updates	to	the	BGP	peer.	●							BGP	communities	can	be	set	in	a	route-map	to	facilitate	matching	of	communities	at	the	upstream	router.	●							Graceful	restart	(Full	and	Helper	mode)	in	BGP.	●							BGP	peering
authentication	using	plaintext	or	MD5.	●							MP-BGP	as	the	control	plane	protocol	for	VXLAN	overlays	or	IPv6	address	families.	Active/active	ECMP	services	supports	up	to	eight	paths.	The	ECMP	hash	algorithm	is	5-tuple	northbound	of	Tier-0	SR.		ECMP	hash	is	based	on	the	source	IP	address,	destination	IP	address,	source	port,	destination	port	and	IP	protocol.	The	hashing	algorithm	determines	how	incoming	traffic	is	forwarded	to	the	next-hop	device	when	there	are	multiple	paths.	ECMP	hashing	algorithm	from	DR	to	multiple	SRs	is	2-tuple	and	is	based	on
the	source	IP	address	and	destination	IP	address.	Graceful	Restart	(GR)	Graceful	restart	in	BGP	allows	a	BGP	speaker	to	preserve	its	forwarding	table	while	the	control	plane	restarts.	It	is	recommended	to	enable	BGP	Graceful	restart	when	the	BGP	peer	has	multiple	supervisors.	A	BGP	control	plane	restart	could	happen	due	to	a	supervisor	switchover	in	a	dual	supervisor	hardware,	planned	maintenance,	or	active	routing	engine	crash.	As	soon	as	a	GR-enabled	router	restarts	(control	plane	failure),	it	preserves	its	forwarding	table,	marks	the	routes	as	stale,
and	sets	a	grace	period	restart	timer	for	the	BGP	session	to	reestablish.	If	the	BGP	session	reestablishes	during	this	grace	period,	route	revalidation	is	done,	and	the	forwarding	table	is	updated.	If	the	BGP	session	does	not	reestablish	within	this	grace	period,	the	router	flushes	the	stale	routes.	The	BGP	session	will	not	be	GR	capable	if	only	one	of	the	peers	advertises	it	in	the	BGP	OPEN	message;	GR	needs	to	be	configured	on	both	ends.	GR	can	be	enabled/disabled	per	Tier-0	gateway.	The	GR	restart	timer	is	180	seconds	by	default	and	cannot	be	change	after
a	BGP	peering	adjacency	is	in	the	established	state,	otherwise	the	peering	needs	to	be	negotiated	again.	4.4						VRF	Lite	4.4.1					VRF	Lite	Generalities	Virtual	Routing	Forwarding	(VRF)	is	a	virtualization	method	that	consists	of	creating	multiple	logical	routing	instances	within	a	physical	routing	appliance.	It	provides	a	complete	control	plane	isolation	between	routing	instances.	VRF	instances	are	commonly	used	in	enterprise	and	service	providers	networks	to	provide	control	and	data	plane	isolation,	allowing	several	use	cases	such	as	overlapping	IP
addressing	between	tenants,	isolation	of	regulated	workload,	isolation	of	external	and	internal	workload	as	well	as	hardware	resources	consolidation.	Starting	with	NSX-T	3.0	it	is	possible	to	extent	the	VRF	present	on	the	physical	network	onto	the	NSX-T	domain.	Creating	a	development	environment	that	replicates	the	production	environment	is	a	typical	use	case	for	VRF.	Another	representative	use	case	for	VRF	is	when	multiple	environments	needs	to	be	isolated	from	each	other.	As	stated	previously,	VRF	instances	are	isolated	between	each	other	by	default;
allowing	communications	between	these	environments	using	the	Route	Leaking	VRF	feature	is	possible.	While	this	feature	allows	inter-VRF	communications,	it	is	important	to	emphasize	that	scalability	can	become	an	issue	if	a	design	permits	all	VRF	to	communicate	between	each	other.	In	this	case,	VRF	might	not	be	the	option.	VRF	should	not	be	replaced	in	lieu	of	the	DFW	construct.	Figure	4‑16:	Networking	VRF	Architecture	pictures	a	traditional	VRF	architecture.	Logical	(Switch	Virtual	Interface	–	VLAN	interface)	or	Physical	interface	should	be	dedicated
to	a	single	VRF	instance.	In	the	following	diagram,	interface	e1/1	and	e2/2	belong	to	VRF-A	while	interface	e1/2	and	e2/2	belong	to	VRF-B.	Each	VRF	will	run	their	own	dynamic	routing	protocol	(or	use	static	routes)	Figure	4‑16:	Networking	VRF	Architecture		With	NSX-T	2.x,	several	multi-tenant	designs	are	possible.	The	first	option	was	to	deploy	a	Tier-1	gateway	for	each	tenant	while	a	shared	Tier-0	provides	connectivity	to	the	physical	networking	fabric	for	all	tenants.	Figure	4‑17:	NSX-T	2.x	Multi-tenant	Architecture.	–	Shared	Tier-0	Gateway	diagrams	that
option.	Figure	4‑17:	NSX-T	2.x	Multi-tenant	Architecture.	–	Shared	Tier-0	Gateway	Another	supported	design	is	to	deploy	a	separate	Tier-0	gateway	for	each	tenant	on	a	dedicated	tenant	edge	node.	Figure	4‑18:	NSX-T	2.x	Multi-tenant	Architecture	-	Dedicated	Tier0	for	Each	Tenant	shows	a	traditional	multi-tenant	architecture	using	dedicated	Tier-0	per	tenant	in	NSX-T	2.X	.			Figure	4‑18:	NSX-T	2.x	Multi-tenant	Architecture	-	Dedicated	Tier0	for	Each	Tenant	In	traditional	networking,	VRF	instances	are	hosted	on	a	physical	appliance	and	share	the	resources
with	the	global	routing	table.	Starting	with	NSX-T	3.0,	Virtual	Routing	and	Forwarding	(VRF)	instances	configured	on	the	physical	fabric	can	be	extended	to	the	NSX-T	domain.	A	VRF	Tier-0	gateway	must	be	hosted	on	a	traditional	Tier-0	gateway	identified	as	the	“Parent	Tier-0”.	Figure	4‑19:	Tier-0	VRF	Gateways	Hosted	on	a	Parent	Tier-0	Gateway	diagrams	an	edge	node	hosting	a	traditional	Tier-0	gateway	with	two	VRF	gateways.	Control	plane	is	completely	isolated	between	all	the	Tier-0	gateways	instances.	Figure	4‑19:	Tier-0	VRF	Gateways	Hosted	on	a
Parent	Tier-0	Gateway	The	parent	Tier-0	gateway	can	be	considered	as	the	global	routing	table	and	must	have	connectivity	to	the	physical	fabric.	A	unique	Tier-0	gateway	instance	(DR	and	SR)	will	be	created	and	dedicated	to	a	VRF.	Figure	4‑20:	Detailed	Representation	of	the	SR/DR	Component	for	Tier-0	VRF	Hosted	on	an	Edge	Node	shows	a	detailed	representation	of	the	Tier-0	VRF	gateway	with	their	respective	Service	Router	and	Distributed	Router	components.	Figure	4‑20:	Detailed	Representation	of	the	SR/DR	Component	for	Tier-0	VRF	Hosted	on	an
Edge	Node	Figure	4‑21:	NSX-T	3.0	Multi-Tenant	Architecture.	Dedicated	Tier-0	VRF	Instance	for	Each	VRF	shows	a	typical	single	tier	routing	architecture	with	two	Tier-0	VRF	gateways	connected	to	their	parent	Tier-0	gateway.	Traditional	segments	are	connected	to	a	Tier-0	VRF	gateway.								Figure	4‑21:	NSX-T	3.0	Multi-Tenant	Architecture.	Dedicated	Tier-0	VRF	Instance	for	Each	VRF	Since	control	plane	is	isolated	between	Tier-0	VRF	instances	and	the	parent	Tier-0	gateway,	each	Tier-0	VRF	needs	their	own	routing	configuration	using	either	static	routes
or	BGP.	It	implies	that	each	Tier-0	VRF	will	have	their	own	dedicated	BGP	process	and	needs	to	have	their	dedicated	BGP	peers.	From	a	data	plane	standpoint,	802.1q	VLAN	tags	are	used	to	differentiate	traffic	between	the	VRFs	instances	as	demonstrated	in	the	previous	figure.	NSX-T	3.0	supports	BGP	and	static	routes	for	the	Tier-0	VRF	gateway.	It	offers	the	flexibility	to	use	static	routes	on	a	particular	Tier-0	VRF	while	another	Tier-0	VRF	would	use	BGP.	Figure	4‑22:	BGP	Peering	Tier-0	VRF	Gateways	and	VRF	on	the	Networking	Fabric	shows	a	topology
with	two	Tier-0	VRF	instances	and	their	respective	BGP	peers	on	the	physical	networking	fabric.	It	is	important	to	emphasize	that	the	Parent	Tier-0	gateway	has	a	BGP	peering	adjacency	with	the	physical	routers	using	their	respective	global	routing	table	and	BGP	process.					Figure	4‑22:	BGP	Peering	Tier-0	VRF	Gateways	and	VRF	on	the	Networking	Fabric	When	a	Tier-0	VRF	is	attached	to	parent	Tier-0,	multiple	parameters	will	be	inherited	by	design	and	cannot	be	changed:	Edge	Cluster	High	Availability	mode	(Active/Active	–	Active/Standby)	BGP	Local	AS
Number	Internal	Transit	Subnet	Tier-0,	Tier-1	Transit	Subnet.	All	other	configuration	parameters	can	be	independently	managed:	External	Interface	IP	addresses	BGP	neighbor	Prefix	list,	route-map,	Redistribution	Firewall	rules	NAT	rules	As	mentioned	previously,	The	Tier-0	VRF	is	hosted	on	the	Parent	Tier-0	and	will	follow	the	high	availability	mode	and	state	of	its	Parent	Tier-0.	Both	Active/Active	or	Active/Standby	high	availability	mode	are	supported	on	the	Tier-0	VRF	gateways.	It	is	not	possible	to	have	an	Active/Active	Tier-0	VRF	hosted	on	an
Active/Standby	Parent	Tier-0.	In	a	traditional	Active/Standby	design,	a	Tier-0	gateway	failover	can	be	triggered	if	all	northbound	BGP	peers	are	unreachable.	Similar	to	the	high	availability	construct	between	the	Tier-0	VRF	and	the	Parent	Tier-0,	the	BGP	peering	design	must	match	between	the	VRF	Tier-0	and	the	Parent	Tier-0.	Inter-SR	routing	is	not	supported	in	Active/Active	VRF	topologies.	Figure	4‑23:	Supported	BGP	Peering	Design	represents	a	BGP	instance	from	both	parent	Tier-0	and	Tier-0	VRF	point	of	view.	This	topology	is	supported	as	each	Tier-0
SR	(on	the	parent	and	on	the	VRF	itself)	have	a	redundant	path	towards	the	network	infrastructure.	Both	the	Parent	Tier-0	gateway	and	the	Tier-0	VRF	gateway	are	peering	with	the	same	physical	networking	device	but	on	a	different	BGP	process.	The	Parent	Tier-0	gateways	peer	with	both	top	of	rack	switches	on	their	respective	global	BGP	process	while	the	Tier-0	VRF	gateways	peer	with	both	top	of	rack	switch	on	another	BGP	process	dedicated	to	the	VRF.	In	this	case	the	Tier-0	VRF	leverages	physical	redundancy	towards	the	networking	fabric	if	one	of	its
northbound	links	fails.					Figure	4‑23:	Supported	BGP	Peering	Design	Figure	4‑24:	Unsupported	Active/Active	Topology	with	VRF	represents	an	unsupported	VRF	Active/Active	design	where	different	routes	are	learned	from	different	physical	routers.	Both	the	Parent	Tier-0	and	VRF	Tier-0	gateways	are	learning	their	default	route	from	a	single	physical	router.	The	active	VRF	Tier-0	must	learn	specific	routes	from	a	single	BGP	peer.	This	kind	of	scenario	would	be	supported	for	traditional	Tier-0	architecture	as	Inter-SR	would	provide	a	redundant	path	to	the
networking	fabric.	This	VRF	architecture	is	not	supported	in	NSX-T	3.0.			Figure	4‑24:	Unsupported	Active/Active	Topology	with	VRF	Figure	4‑25:	Unsupported	Active-Active	Topology	with	VRF	–	Failure	demonstrates	the	traffic	being	as	one	internet	router	fails	and	Tier-0	VRF	gateways	can’t	leverage	another	redundant	path	to	reach	the	destination.	Since	the	Parent	Tier-0	gateway	has	an	established	BGP	peering	adjacency,	failover	will	not	be	triggered,	and	traffic	will	be	blackholed	on	the	Tier-0	VRF.			Figure	4‑25:	Unsupported	Active-Active	Topology	with
VRF	–	Failure	On	the	Parent	Tier-0:	VM	“172.16.10.0”	sends	its	IP	traffic	towards	the	internet	through	the	Tier-0	DR.	Since	the	Tier-0	topology	is	Active/Active,	the	Tier-0	DR	sends	the	traffic	to	both	Tier-0	SR1	and	Tier-0	SR2	using	a	2	tuple.	From	a	Tier-0	SR1	point	of	view,	the	traffic	that	needs	to	be	routed	towards	the	internet	will	be	sent	towards	Tier-0	SR2	as	there	is	an	inter-SR	BGP	adjacency	and	that	Tier-0	SR2	learns	the	route	from	another	internet	switch.	Traffic	is	received	by	the	Tier-0	SR2	and	routed	towards	the	physical	fabric.	On	the	Tier-0	VRF:
VM	“172.16.10.0”	sends	its	IP	traffic	towards	the	internet	through	the	Tier-0	DR.	Since	the	Tier-0	topology	is	Active/Active,	the	Tier-0	DR	sends	the	traffic	to	both	Tier-0	SR1	and	Tier-0	SR2	using	a	2	tuple.	From	a	Tier-0	SR1	point	of	view,	the	traffic	is	blackholed	as	there	is	no	inter-SR	BGP	adjacency	between	the	Tier-0	SRs	VRF.	Following	the	same	BGP	peering	design	and	principle	for	Active/Standby	topologies	is	also	mandatory	for	VRF	architectures	as	the	Tier-0	VRF	will	inherit	the	behavior	of	the	parent	Tier-0	gateway.	Figure	4‑26:	Unsupported	Design
BGP	Architecture	Different	Peering	with	the	Networking	Fabric	represents	another	unsupported	design	with	VRF	architecture.	Figure	4‑26:	Unsupported	Design	BGP	Architecture	Different	Peering	with	the	Networking	Fabric	In	this	design,	traffic	will	be	blackholed	on	the	Tier-0	VRF	SR1	as	the	internet	router	fails.	Since	the	Tier-0	VRF	share	its	high	availability	running	mode	with	the	Parent	Tier-0,	it	is	important	to	note	that	the	Tier-0	SR1	will	not	failover	to	the	Tier-0	SR2.	The	reason	behind	this	behavior	is	because	a	failover	is	triggered	only	if	all
northbound	BGP	sessions	change	to	the	“down”	state.	Since	Tier-0	SR1	still	has	an	active	BGP	peering	with	a	northbound	router	on	the	physical	networking	fabric,	failover	will	not	occur,	and	traffic	will	be	blackholed	on	the	VRF	that	have	only	one	BGP	peer	active.	Traditional	Tier-1	gateways	can	be	connected	to	Tier-0	VRF	to	provide	a	multi-tier	routing	architecture	as	demonstrated	in	Figure	4‑27:	Multi-Tier	Routing	Architecture	and	VRF-lite.				Figure	4‑27:	Multi-Tier	Routing	Architecture	and	VRF-lite	Stateful	services	can	either	run	on	a	Tier-0	VRF	gateway
or	a	Tier-1	gateway	except	for	VPN	and	Load	Balancing	as	these	features	are	not	supported	on	a	Tier-0	VRF.	Tier-1	SR	in	charge	of	the	stateful	services	for	a	particular	VRF	will	be	hosted	on	the	same	edge	nodes	as	the	Parent	Tier-0	Gateway.	Figure	4‑28:	Stateful	Services	Supported	on	Tier-1	represents	stateful	services	running	on	traditional	Tier-1	gateways	SR.			Figure	4‑28:	Stateful	Services	Supported	on	Tier-1	By	default,	data-plane	traffic	between	VRF	instances	is	isolated	in	NSX-T.	By	configuring	VRF	Route	Leaking,	traffic	can	be	exchanged	between
VRF	instances.	As	a	result,	static	routes	must	be	configured	on	the	Tier-0	VRF	instances	to	allow	traffic	to	be	exchanged.	The	next	hop	for	these	static	routes	must	not	be	a	Tier-0	gateway	(VRF	or	Parent).	As	a	result,	multi-tier	routing	architecture	must	be	implemented	to	allow	traffic	to	be	exchanged	between	the	VRF	instances.	Figure	4‑29:	VRF	Route	Leaking	with	Static	Routes	demonstrates	a	supported	topology	for	VRF	route	leaking	Two	static	routes	are	necessary:	Static	Route	on	Tier-0	VRF	A	Destination	Subnet:	172.16.20.0/24	Next	Hop	IP	Address	of
Tier-1	DR	in	VRF	B	(e.g.	100.64.80.3)	Admin	Distance:	1	Scope:	VRF-B	Static	Route	on	Tier-0	VRF	B	Destination	Subnet:	172.16.10.0/24	Next	Hop	IP	Address	of	Tier-1	DR	in	VRF	A	(e.g.	100.64.80.1)	Admin	Distance:	1	Scope:	VRF-A			Figure	4‑29:	VRF	Route	Leaking	with	Static	Routes	VRF-lite	also	supports	northbound	VRF	route	leaking	as	traffic	can	be	exchanged	between	a	virtual	workload	on	an	VRF	overlay	segment	and	a	bare	metal	server	hosted	in	a	different	VRF	on	the	physical	networking	fabric.	NSX-T	VRF	route	leaking	requires	that	the	next	hop	for
the	static	route	must	not	be	a	Tier-0	gateway.	Static	routes	pointing	to	the	directly	connected	IP	addresses	uplink	would	not	be	a	recommended	design	as	the	static	route	would	fail	if	an	outage	would	occur	on	that	link	or	neighbor	(Multiple	static	routes	would	be	needed	for	redundancy).	A	loopback	or	virtual	IP	address	host	route	(/32)	can	be	advertised	in	the	network	in	the	destination	VRF.		Since	the	host	route	is	advertised	by	both	top	of	rack	switches,	two	ECMP	routes	will	be	installed	in	the	Tier-0	VRF.	Figure	4‑30:	VRF	Leaking	Traffic	with	Northbound
Destination	demonstrates	the	Tier-0	VRF	gateways	will	use	all	available	healthy	paths	to	the	networking	fabric	to	reach	the	server	in	VRF-B.			Figure	4‑30:	VRF	Leaking	Traffic	with	Northbound	Destination	Two	static	routes	are	necessary:	Static	Route	on	Tier-0	VRF	A	Destination	Subnet:	10.10.10.0/24		Next	Hop	192.168.1.1	(Loopback	interface)	Admin	Distance:	1	Scope:	VRF-B	Static	Route	on	Tier-0	VRF	B	Destination	Subnet:	172.16.10.0/24	Next	Hop	IP	Address	of	Tier-1	DR	in	VRF	A	(e.g.	100.64.80.1)	Admin	Distance:	1	Scope:	VRF-A	In	case	of	a	physical
router	outage,	the	next	hop	for	the	static	route	on	the	Tier-0	VRF	A	can	still	be	reached	using	a	different	healthy	BGP	peer	advertising	that	host	route.	4.5						IPv6	Routing	Capabilities	NSX-T	Data	Center	also	supports	dual	stack	for	the	interfaces	on	a	Tier-0	or	Tier-1	Gateway.	Users	can	leverage	distributed	services	like	distributed	routing	and	distributed	firewall	for	East-West	traffic	in	a	single	tier	topology	or	multi-tiered	topology	for	IPv6	workloads	now.	Users	can	also	leverage	centralized	services	like	Gateway	Firewall	for	North-South	traffic.	NSX-T
Datacenter	supports	the	following	unicast	IPv6	addresses:	Global	Unicast:	Globally	unique	IPv6	address	and	internet	routable	Link-Local:	Link	specific	IPv6	address	and	used	as	next	hop	for	IPv6	routing	protocols	Unique	local:	Site	specific	unique	IPv6	addresses	used	for	inter-site	communication	but	not	routable	on	internet.	Based	on	RFC4193.	The	following	table	shows	a	summarized	view	of	supported	IPv6	unicast	and	multicast	address	types	on	NSX-T	Datacenter	components.	Table	4‑1:	Type	of	IPv6	Addresses	Supported	on	Tier-0	and	Tier-1	Gateway
Components	Figure	4‑31:	Single	Tier	and	Multi-tier	IPv6	Routing	Topology	shows	a	single	tiered	routing	topology	on	the	left	side	with	a	Tier-0	Gateway	supporting	dual	stack	on	all	interfaces	and	a	multi-tiered	routing	topology	on	the	right	side	with	a	Tier-0	Gateway	and	Tier-1	Gateway	supporting	dual	stack	on	all	interfaces.	A	user	can	either	assign	static	IPv6	addresses	to	the	workloads	or	use	a	DHCPv6	relay	supported	on	gateway	interfaces	to	get	dynamic	IPv6	addresses	from	an	external	DHCPv6	server.	For	a	multi-tier	IPv6	routing	topology,	each	Tier-0-to-
Tier-1	peer	connection	is	provided	a	/64	unique	local	IPv6	address	from	a	pool	i.e.	fc5f:2b61:bd01::/48.	A	user	has	the	flexibility	to	change	this	subnet	range	and	use	another	subnet	if	desired.	Similar	to	IPv4,	this	IPv6	address	is	auto	plumbed	by	system	in	background.	Figure	4‑31:	Single	Tier	and	Multi-tier	IPv6	Routing	Topology	Tier-0	Gateway	supports	following	IPv6	routing	features:	Static	routes	with	IPv6	Next-hop	MP-eBGP	with	IPv4	and	IPv6	address	families	Multi-hop	eBGP	IBGP	ECMP	support	with	static	routes,	EBGP	and	IBGP	Outbound	and	Inbound
route	influencing	using	Weight,	Local	Pref,	AS	Path	prepend	and	MED.	IPv6	Route	Redistribution	IPv6	Route	Aggregation	IPv6	Prefix	List	and	Route	map	IPv6	Loopback	Interfaces	Tier-1	Gateway	supports	following	IPv6	routing	features:	Static	routes	with	IPv6	Next-hop	IPv6	routing	between	Tier-0	and	Tier-1	Gateway	is	auto	plumbed	similar	to	IPv4	routing.	As	soon	as	Tier-1	Gateway	is	connected	to	Tier-0	Gateway,	the	management	plane	configures	a	default	route	(::/0)	on	Tier-1	Gateway	with	next	hop	IPv6	address	as	Router	link	IP	of	Tier-0	Gateway
(fc05:2b61:bd01:5000::1/64,	as	shown	in	Figure	4‑32:	IPv6	Routing	in	a	Multi-tier	Topology).	To	provide	reachability	to	subnets	connected	to	the	Tier-1	Gateway,	the	Management	Plane	(MP)	configures	routes	on	the	Tier-0	Gateway	for	all	the	LIFs	connected	to	Tier-1	Gateway	with	a	next	hop	IPv6	address	as	Tier-1	Gateway	Router	link	IP	(fc05:2b61:bd01:5000::2/64,	as	shown	in	Figure	4‑32:	IPv6	Routing	in	a	Multi-tier	Topology).	2001::/64	&	2002:/64	are	seen	as	“Tier-1	Connected”	routes	on	Tier-0.	Northbound,	Tier-0	Gateway	redistributes	the	Tier-0
connected	and	Tier-1	Connected	routes	in	BGP	and	advertises	these	to	its	eBGP	neighbor,	the	physical	router.			Figure	4‑32:	IPv6	Routing	in	a	Multi-tier	Topology	4.6						Services	High	Availability	NSX	Edge	nodes	run	in	an	Edge	cluster,	hosting	centralized	services,	and	providing	connectivity	to	the	physical	infrastructure.	Since	the	services	are	run	on	the	SR	component	of	a	Tier-0	or	Tier-1	gateway,	the	following	concept	is	relevant	to	SR.	This	SR	service	runs	on	an	Edge	node	and	has	two	modes	of	operation	–	active/active	or	active/standby.	When	a	Tier-1
gateway	is	configured	to	be	hosted	on	an	Edge	cluster,	an	SR	is	automatically	instantiated	even	if	no	services	are	configured	or	running	on	the	Tier-1.	When	a	Tier-1	SR	is	instantiated,	the	Tier-0	DR	is	removed	from	the	hypervisors	and	located	on	the	edge	nodes	only.	4.6.1					Active/Active	Active/Active	–	This	is	a	high	availability	mode	where	SRs	hosted	on	Edge	nodes	act	as	active	forwarders.	Stateless	services	such	as	layer	3	forwarding	are	IP	based,	so	it	does	not	matter	which	Edge	node	receives	and	forwards	the	traffic.	All	the	SRs	configured	in
active/active	configuration	mode	are	active	forwarders.	This	high	availability	mode	is	only	available	on	Tier-0	gateway.	Stateful	services	typically	require	tracking	of	connection	state	(e.g.,	sequence	number	check,	connection	state),	thus	traffic	for	a	given	session	needs	to	go	through	the	same	Edge	node.	As	of	NSX-T	3.0,	active/active	HA	mode	does	not	support	stateful	services	such	as	Gateway	Firewall	or	stateful	NAT.	Stateless	services,	including	reflexive	NAT	and	stateless	firewall,	can	leverage	the	active/active	HA	model.	Left	side	of	Figure	4‑33:	Tier-0
Gateway	Configured	in	Active/Active	HA	Mode	shows	a	Tier-0	gateway	(configured	in	active/active	high	availability	mode)	with	two	external	interfaces	leveraging	two	different	Edge	nodes,	EN1	and	EN2.	Right	side	of	the	diagram	shows	that	the	services	router	component	(SR)	of	this	Tier-0	gateway	instantiated	on	both	Edge	nodes,	EN1	and	EN2.	A	Compute	host,	ESXi	is	also	shown	in	the	diagram	that	only	has	distributed	component	(DR)	of	Tier-0	gateway.	Figure	4‑33:	Tier-0	Gateway	Configured	in	Active/Active	HA	Mode	Note	that	Tier-0	SR	on	Edge	nodes,
EN1	and	EN2	have	different	IP	addresses	northbound	toward	physical	routers	and	different	IP	addresses	southbound	towards	Tier-0	DR.	Management	plane	configures	two	default	routes	on	Tier-0	DR	with	next	hop	as	SR	on	EN1	(169.254.0.2)	and	SR	on	EN2	(169.254.0.3)	to	provide	ECMP	for	overlay	traffic	coming	from	compute	hosts.	North-South	traffic	from	overlay	workloads	hosted	on	Compute	hosts	will	be	load	balanced	and	sent	to	SR	on	EN1	or	EN2,	which	will	further	do	a	routing	lookup	to	send	traffic	out	to	the	physical	infrastructure.	A	user	does	not
have	to	configure	these	static	default	routes	on	Tier-0	DR.	Automatic	plumbing	of	default	route	happens	in	background	depending	upon	the	HA	mode	configuration.	Inter-SR	Routing	To	provide	redundancy	for	physical	router	failure,	Tier-0	SRs	on	both	Edge	nodes	must	establish	routing	adjacency	or	exchange	routing	information	with	different	physical	router	or	TOR.	These	physical	routers	may	or	may	not	have	the	same	routing	information.	For	instance,	a	route	192.168.100.0/24	may	only	be	available	on	physical	router	1	and	not	on	physical	router	2.	For	such
asymmetric	topologies,	users	can	enable	Inter-SR	routing.	This	feature	is	only	available	on	Tier-0	gateway	configured	in	active/active	high	availability	mode.	Figure	4‑34:	Inter-SR	Routing	shows	an	asymmetric	routing	topology	with	Tier-0	gateway	on	Edge	node,	EN1	and	EN2	peering	with	physical	router	1	and	physical	router	2,	both	advertising	different	routes.	When	Inter-SR	routing	is	enabled	by	the	user,	an	overlay	segment	is	auto	plumbed	between	SRs	(similar	to	the	transit	segment	auto	plumbed	between	DR	and	SR)	and	each	end	gets	an	IP	address
assigned	in	169.254.0.128/25	subnet	by	default.		An	IBGP	session	is	automatically	created	between	Tier-0	SRs	and	northbound	routes	(EBGP	and	static	routes)	are	exchanged	on	this	IBGP	session.	Figure	4‑34:	Inter-SR	Routing	As	explained	in	previous	figure,	Tier-0	DR	has	auto	plumbed	default	routes	with	next	hops	as	Tier-0	SRs	and	North-South	traffic	can	go	to	either	SR	on	EN1	or	EN2.	In	case	of	asymmetric	routing	topologies,	a	particular	Tier-0	SR	may	or	may	not	have	the	route	to	a	destination.	In	that	case,	traffic	can	follow	the	IBGP	route	to	another	SR
that	has	the	route	to	destination.	Figure	4‑34:	Inter-SR	Routing	shows	a	topology	where	Tier-0	SR	on	EN1	is	learning	a	default	WAN	route	0.0.0.0/0	and	a	corporate	prefix	192.168.100.0/24	from	physical	router	1	and	physical	router	2	respectively.	If	“External	1”	interface	on	Tier-0	fails	and	the	traffic	from	compute	workloads	destined	to	WAN	lands	on	Tier-0	SR	on	EN1,	this	traffic	can	follow	the	default	route	(0.0.0.0/0)	learned	via	IBGP	from	Tier-0	SR	on	EN2.Traffic	is	being	sent	to	EN2	through	the	Geneve	overlay.	After	a	route	lookup	on	Tier-0	SR	on	EN2,
this	N-S	traffic	can	be	sent	to	physical	router	1	using	“External	interface	3”.	Graceful	Restart	and	BFD	Interaction	with	Active/Active	–	Tier-0	SR	Only	If	an	Edge	node	is	connected	to	a	TOR	switch	that	does	not	have	the	dual	supervisor	or	the	ability	to	retain	forwarding	traffic	when	the	control	plane	is	restarting,	enabling	GR	in	eBGP	TOR	does	not	make	sense.	There	is	no	value	in	preserving	the	forwarding	table	on	either	end	or	sending	traffic	to	the	failed	or	restarting	device.	In	case	of	an	active	SR	failure	(i.e.,	the	Edge	node	goes	down),	physical	router
failure,	or	path	failure,	forwarding	will	continue	using	another	active	SR	or	another	TOR.	BFD	should	be	enabled	with	the	physical	routers	for	faster	failure	detection.	It	is	recommended	to	enable	GR	If	the	Edge	node	is	connected	to	a	dual	supervisor	system	that	supports	forwarding	traffic	when	the	control	plane	is	restarting.	This	will	ensure	that	forwarding	table	data	is	preserved	and	forwarding	will	continue	through	the	restarting	supervisor	or	control	plane.	Enabling	BFD	with	such	a	system	would	depend	on	the	device-specific	BFD	implementation.	If	the
BFD	session	goes	down	during	supervisor	failover,	then	BFD	should	not	be	enabled	with	this	system.	If	the	BFD	implementation	is	distributed	such	that	the	BFD	session	would	not	go	down	in	case	of	supervisor	or	control	plane	failure,	then	enable	BFD	as	well	as	GR.	4.6.2					Active/Standby	Active/Standby	–	This	is	a	high	availability	mode	where	only	one	SR	act	as	an	active	forwarder.	This	mode	is	required	when	stateful	services	are	enabled.	Services	like	NAT	are	in	constant	state	of	sync	between	active	and	standby	SRs	on	the	Edge	nodes.	This	mode	is
supported	on	both	Tier-1	and	Tier-0	SRs.	Preemptive	and	Non-Preemptive	modes	are	available	for	both	Tier-0	and	Tier-1	SRs.	Default	mode	for	gateways	configured	in	active/standby	high	availability	configuration	is	non-preemptive.	A	user	can	select	the	preferred	member	(Edge	node)	when	a	gateway	is	configured	in	active/standby	preemptive	mode.	When	enabled,	preemptive	behavior	allows	a	SR	to	resume	active	role	on	preferred	edge	node	as	soon	as	it	recovers	from	a	failure.	For	Tier-1	Gateway,	active/standby	SRs	have	the	same	IP	addresses	northbound.
Only	the	active	SR	will	reply	to	ARP	requests,	while	the	standby	SR	interfaces	operational	state	is	set	as	down	so	that	they	will	automatically	drop	packets.	For	Tier-0	Gateway,	active/standby	SRs	have	different	IP	addresses	northbound	and	both	have	eBGP	sessions	established	on	their	uplinks.	Both	Tier-0	SRs	(active	and	standby)	receive	routing	updates	from	physical	routers	and	advertise	routes	to	the	physical	routers;	however,	the	standby	Tier-0	SR	prepends	its	local	AS	three	times	in	the	BGP	updates	so	that	traffic	from	the	physical	routers	prefer	the
active	Tier-0	SR.	Southbound	IP	addresses	on	active	and	standby	Tier-0	SRs	are	the	same	and	the	operational	state	of	standby	SR	southbound	interface	is	down.	Since	the	operational	state	of	southbound	Tier-0	SR	interface	is	down,	the	Tier-0	DR	does	not	send	any	traffic	to	the	standby	SR.	Figure	4‑35:	Active	and	Standby	Routing	Control	with	eBGP	shows	active	and	standby	Tier-0	SRs	on	Edge	nodes	“EN1”	and	“EN2”.	Figure	4‑35:	Active	and	Standby	Routing	Control	with	eBGP	The	placement	of	active	and	standby	SR	in	terms	of	connectivity	to	TOR	or
northbound	infrastructure	becomes	an	important	design	choice,	such	that	any	component	failure	should	not	result	in	a	failure	of	both	active	and	standby	service.	Diversity	of	connectivity	to	TOR	for	bare	metal	edge	nodes	and	host-specific	availability	consideration	for	hosts	where	Edge	node	VMs	are	hosted,	becomes	an	important	design	choice.	These	choices	are	described	in	the	NSX-T	Design	Considerations.	4.6.2.1							Graceful	Restart	and	BFD	Interaction	with	Active/Standby	Active/standby	services	have	an	active/active	control	plane	with	active/standby
data	forwarding.	In	this	redundancy	model,	eBGP	is	established	on	active	and	standby	Tier-0s	SR	with	their	respective	TORs.	If	the	Edge	node	is	connected	to	a	system	that	does	not	have	the	dual	supervisor	or	the	ability	to	keep	forwarding	traffic	when	the	control	plane	is	restarting,	enabling	GR	in	eBGP	does	not	make	sense.	There	is	no	value	in	preserving	the	forwarding	table	on	either	end	as	well	as	no	point	sending	traffic	to	the	failed	or	restarting	device.	When	the	active	Tier-0	SR	goes	down,	the	route	advertised	from	standby	Tier-0	becomes	the	best	route
and	forwarding	continues	using	the	newly	active	SR.	If	the	TOR	switch	supports	BFD,	it	is	recommended	to	run	BFD	on	both	the	eBGP	neighbors	for	faster	failure	detection.	It	is	recommended	to	enable	GR	If	the	Edge	node	is	connected	to	a	dual	supervisor	system	that	supports	forwarding	traffic	when	the	control	plane	is	restarting.		This	will	ensure	that	the	forwarding	table	is	table	is	preserved	and	forwarding	will	continue	through	the	restarting	supervisor	or	control	plane.	Enabling	BFD	with	such	system	depends	on	BFD	implementation	of	hardware	vendor.
If	the	BFD	session	goes	down	during	supervisor	failover,	then	BFD	should	not	be	enabled	with	this	system;	however,	if	the	BFD	implementation	is	distributed	such	that	that	the	BFD	session	would	not	go	down	in	case	of	supervisor	or	control	plane	failure,	then	enable	BFD	as	well	as	GR.	4.6.3					High	Availability	Failover	Triggers	An	active	SR	on	an	Edge	node	is	declared	down	when	one	of	the	following	conditions	is	met:	●							Edge	nodes	in	an	Edge	cluster	exchange	BFD	keep	lives	on	two	interfaces	of	the	Edge	node,	management	and	overlay	tunnel	interfaces.
Failover	will	be	triggered	when	a	SR	fails	to	receive	keep	lives	on	both	interfaces.	●							All	BGP	sessions	or	northbound	routing	on	the	SR	is	down.	This	is	only	applicable	on	Tier-0	SR.	When	static	routes	are	used	on	a	Bare	Metal	Edge	node	with	NSX-T	3.0,	the	failover	will	be	triggered	when	the	status	of	all	PNIC	carrying	the	uplinks	is	down.	●							Edge	nodes	also	run	BFD	with	compute	hosts.	When	all	the	overlay	tunnels	are	down	to	remote	Edges	and	compute	hypervisors,	an	SR	would	be	declared	down.	4.7						Edge	Node	Edge	nodes	are	service	appliances
with	pools	of	capacity,	dedicated	to	running	network	and	security	services	that	cannot	be	distributed	to	the	hypervisors.	Edge	node	also	provides	connectivity	to	the	physical	infrastructure.	Previous	sections	mentioned	that	centralized	services	will	run	on	the	SR	component	of	Tier-0	or	Tier-1	gateways.	These	features	include:	Connectivity	to	physical	infrastructure	(static	routing	/	BGP	/	MP-BGP)	VRF-lite		NAT		DHCP	server		Metadata	proxy		Gateway	Firewall		Load	Balancer		L2	Bridging	Service	Interface	VPN	As	soon	as	one	of	these	services	is	configured	or
an	external	interface	is	defined	on	the	Tier-0	gateway,	a	SR	is	instantiated	on	the	Edge	node.	The	Edge	node	is	also	a	transport	node	just	like	compute	nodes	in	NSX-T,	and	like	a	compute	node	it	can	connect	to	more	than	one	transport	zones.	A	specific	Edge	node	can	be	connected	to	only	one	overlay	transport	zone	and	depending	upon	the	topology,	is	connected	to	one	or	more	VLAN	transport	zones	for	N-S	connectivity.	There	are	two	transport	zones	on	the	Edge:	Overlay	Transport	Zone:	Any	traffic	that	originates	from	a	VM	participating	in	NSX-T	domain
may	require	reachability	to	external	devices	or	networks.	This	is	typically	described	as	external	North-South	traffic.	Traffic	from	VMs	may	also	require	some	centralized	service	like	NAT,	load	balancer	etc.	To	provide	reachability	for	N-S	traffic	and	to	consume	centralized	services,	overlay	traffic	is	sent	from	compute	transport	nodes	to	Edge	nodes.	Edge	node	needs	to	be	configured	with	a	single	overlay	transport	zone	so	that	it	can	decapsulate	the	overlay	traffic	received	from	compute	nodes	as	well	as	encapsulate	the	traffic	sent	to	compute	nodes.	VLAN
Transport	Zone:	Edge	nodes	connect	to	physical	infrastructure	using	VLANs.	Edge	node	needs	to	be	configured	for	VLAN	transport	zone	to	provide	external	or	N-S	connectivity	to	the	physical	infrastructure.	Depending	upon	the	N-S	topology,	an	edge	node	can	be	configured	with	one	or	more	VLAN	transport	zones.	Edge	node	can	have	one	or	more	N-VDS	to	provide	desired	connectivity.	Each	N-VDS	on	the	Edge	node	uses	an	uplink	profile	which	can	be	same	or	unique	per	N-VDS.	Teaming	policy	defined	in	this	uplink	profile	defines	how	the	N-VDS	balances
traffic	across	its	uplinks.	The	uplinks	can	in	turn	be	individual	pNICs	or	LAGs.	Types	of	Edge	Nodes	Edge	nodes	are	available	in	two	form	factors	–	VM	and	bare	metal.	Both	leverage	the	data	plane	development	kit	(DPDK)	for	faster	packet	processing	and	high	performance.	There	are	different	VM	form	factors	available.	Each	of	them	has	a	different	resource	footprint	and	can	be	used	to	achieve	different	guidelines.	These	are	detailed	in	the	below	table.			Size	Memory	vCPU	Disk	Specific	Usage	Guidelines	Small	4GB	2	200	GB	PoC	only,	LB	functionality	is	not
available.	Medium	8GB	4	200	GB	Suitable	for	production	with	centralized	services	like	NAT,	Gateway	Firewall.	Load	balancer	functionality	can	be	leveraged	for	POC.	Large	32GB	8	200	GB	Suitable	for	production	with	centralized	services	like	NAT,	Gateway	Firewall,	load	balancer	etc.	Extra	Large	64GB	16	200GB	Suitable	for	production	with	centralized	services	like	NAT,	Gateway	Firewall,	load	balancer	etc.	Typically	deployed,	where	higher	performance	is	desired	for	services	like	Layer	7	Load	balancer	and	VPN.	Bare	metal	Edge	32GB	8	200	GB	Suitable	for
production	with	centralized	services	like	NAT,	Gateway	Firewall,	load	balancer	etc.	Typically	deployed,	where	higher	performance	at	low	packet	size	and	sub-second	N-S	convergence	is	desired.	The	Table	4‑2	Edge	VM	Form	Factor	and	Usage	Guidelines	The	Bare	Metal	Edge	resources	specified	above	specify	the	minimum	resources	needed.	It	is	recommended	to	deploy	an	edge	node	on	a	bare	metal	server	with	the	following	specifications	for	maximum	performance:	Memory:	256GB	CPU	Cores:	24	Disk	Space:	200GB	When	NSX-T	Edge	is	installed	as	a	VM,
vCPUs	are	allocated	to	the	Linux	IP	stack	and	DPDK.	The	number	of	vCPU	assigned	to	a	Linux	IP	stack	or	DPDK	depends	on	the	size	of	the	Edge	VM.	A	medium	Edge	VM	has	two	vCPUs	for	Linux	IP	stack	and	two	vCPUs	dedicated	for	DPDK.	This	changes	to	four	vCPUs	for	Linux	IP	stack	and	four	vCPUs	for	DPDK	in	a	large	size	Edge	VM.	Starting	with	NSX-T	3.0,	several	AMD	CPUs	are	supported	both	for	the	virtualized	and	Bare	Metal	Edge	node	form	factor.	Specifications	can	be	found	in	the	NSX	Documentation	at:	.	4.8						Multi-TEP	support	on	Edge	Node
Staring	with	NSX-T	2.4	release,	Edge	nodes	support	multiple	overlay	tunnels	(multi-TEP)	configuration	to	load	balance	overlay	traffic	for	overlay	segments/logical	switches.	Multi-TEP	is	supported	in	both	Edge	VM	and	bare	metal.		Figure	4‑36:	Bare	metal	Edge	-Same	N-VDS	for	overlay	and	external	traffic	with	Multi-TEP	shows	two	TEPs	configured	on	the	bare	metal	Edge.	Each	overlay	segment/logical	switch	is	pinned	to	a	specific	tunnel	end	point	IP,	TEP	IP1	or	TEP	IP2.	Each	TEP	uses	a	different	uplink,	for	instance,	TEP	IP1	uses	Uplink1	that’s	mapped	to
pNIC	P1	and	TEP	IP2	uses	Uplink2	that’s	mapped	to	pNIC	P2.	This	feature	offers	a	better	design	choice	by	load	balancing	overlay	traffic	across	both	physical	pNICs	and	also	simplifies	N-VDS	design	on	the	Edge.	Notice	that	a	single	N-VDS	is	used	in	this	topology	that	carries	both	overlay	and	external	traffic.	In-band	management	feature	is	leveraged	for	management	traffic.	Overlay	traffic	gets	load	balanced	by	using	multi-TEP	feature	on	Edge	and	external	traffic	gets	load	balanced	using	“Named	Teaming	Policy".	Figure	4‑36:	Bare	metal	Edge	-Same	N-VDS	for
overlay	and	external	traffic	with	Multi-TEP	Following	pre-requisites	must	be	met	for	multi-TEP	support:							TEP	configuration	must	be	done	on	one	N-VDS	only.							All	TEPs	must	use	same	transport	VLAN	for	overlay	traffic.							All	TEP	IPs	must	be	in	same	subnet	and	use	same	default	gateway.	During	a	pNIC	failure,	Edge	performs	a	TEP	failover	by	migrating	TEP	IP	and	its	MAC	address	to	another	uplink.	For	instance,	if	pNIC	P1	fails,	TEP	IP1	along	with	its	MAC	address	will	be	migrated	to	use	Uplink2	that’s	mapped	to	pNIC	P2.	In	case	of	pNIC	P1	failure,
pNIC	P2	will	carry	the	traffic	for	both	TEP	IP1	and	TEP	IP2.	A	Case	for	a	Better	Design:	This	version	of	the	design	guide	introduced	a	simpler	way	to	configure	Edge	connectivity,	referred	as	“Single	N-VDS	Design”.	The	key	reasons	for	adopting	“Single	N-VDS	Design”:							Multi-TEP	support	for	Edge	–	Details	of	multi-TEP	is	described	as	above.	Just	like	an	ESXi	transport	node	supporting	multiple	TEP,	Edge	node	has	a	capability	to	support	multiple	TEP	per	uplink	with	following	advantages:	Removes	critical	topology	restriction	with	bare	metal	–	straight
through	LAG	Allowing	the	use	of	multiple	pNICs	for	the	overlay	traffic	in	both	bare	metal	and	VM	form	factor.	■							An	Edge	VM	supporting	multiple	TEP	can	have	two	uplinks	from	the	same	N-VDS,	allowing	utilization	of	both	pNICs.	Efficient	load	sharing	among	host	to	Edge	VM.							Multiple	teaming	policy	per	N-VDS	–	Default	and	Named	Teaming	Policy	Allows	specific	uplink	to	be	designated	or	pinned	for	a	given	VLAN	Allowing	uplinks	to	be	active/standby	or	active-only	to	drive	specific	behavior	of	a	given	traffic	types	while	co-existing	other	traffic	type
following	entirely	different	paths							Normalization	of	N-VDS	configuration	–	All	form	factors	or	Edge	and	deployments	uses	single	N-VDS	along	with	host.	Single	teaming	policy	for	overlay	–	Load	Balanced	Source.	Single	policy	for	N-S	peering	–	Named	teaming	Policy							Reduction	in	management	and	control	plane	load	–	With	each	N-VDS,	additional	resources	are	used	such	as	IP	addressing	for	management,	connections	to	NSX	manager	and	BFD	sessions	to	all	transport	nodes	as	well	all	the	Edge	nodes.		The	BFD	sessions	are	fully	meshed,	in	other	words	the
session	counts	increase	with	each	N-VDS	with	N(N-1)	expansion.	The	CPU	resources	are	also	consumed	by	multiple	N-VDS	within	the	same	Edge	VM.	4.8.1					Bare	Metal	Edge	Node	NSX-T	bare	metal	Edge	runs	on	a	physical	server	and	is	installed	using	an	ISO	file	or	PXE	boot.	Legacy	BIOS	mode	is	the	only	supported	booting	mode	on	NSXT-T	3.0.	A	bare	metal	Edge	differs	from	the	VM	form	factor	Edge	in	terms	of	performance.	It	provides	sub-second	convergence,	faster	failover,	and	higher	throughput	at	low	packet	size	(discussed	in	performance	Chapter	8).
There	are	certain	hardware	requirements	including	CPU	specifics	and	supported	NICs	can	be	found	in	the	NSX	Edge	Bare	Metal	Requirements	section	of	the	NSX-T	installation	guide.	When	a	bare	metal	Edge	node	is	installed,	a	dedicated	interface	is	retained	for	management.	If	redundancy	is	desired,	two	NICs	can	be	used	for	management	plane	high	availability.	These	management	interfaces	can	also	be	1G.	Bare	metal	Edge	also	supports	in-band	management	where	management	traffic	can	leverage	an	interface	being	used	for	overlay	or	external	(N-S)
traffic.	Bare	metal	Edge	node	supports	a	maximum	of	16	physical	NICs	for	overlay	traffic	and	external	traffic	to	top	of	rack	(TOR)	switches.	For	each	of	these	16	physical	NICs	on	the	server,	an	internal	interface	is	created	following	the	naming	scheme	“fp-ethX”.	These	internal	interfaces	are	assigned	to	the	DPDK	Fast	Path.	There	is	a	flexibility	in	assigning	these	Fast	Path	interfaces	(fp-eth)	for	overlay	or	external	connectivity.	4.8.1.1							Management	Plane	Configuration	Choices	with	Bare	Metal	Node	This	section	covers	all	the	available	options	in	managing
the	bare	metal	node.	There	are	four	options	as	describe	in	below	diagram:	Out	of	Band	Management	with	Single	pNIC	Left	side	of	Figure	4‑37:	Bare	Metal	Edge	Management	Configuration	Choices	shows	a	bare	metal	edge	node	with	3	physical	NICs.	The	dedicated	pNIC	for	management	and	is	used	to	send/receive	management	traffic.	The	management	pNIC	can	be	1Gbps.	There	is	no	redundancy	for	management	traffic	in	this	topology.	If	P1	goes	down,	the	management	traffic	will	fail.	However,	Edge	node	will	continue	to	function	as	this	doesn’t	affect	data
plane	traffic.	In	Band	Management	–	Data	Plane	(fast-path)	NIC	carrying	Management	Traffic	This	capability	was	added	in	NSX-T	2.4	release.	It	is	not	mandatory	to	have	a	dedicated	physical	interface	to	carry	management	traffic.	This	traffic	can	leverage	one	of	the	DPDK	fast-path	interfaces.	On	the	right	side	of	the	Figure	4‑37:	Bare	Metal	Edge	Management	Configuration	Choices,	P2	is	selected	to	send	management	traffic.	In-band	management	configuration	is	available	via	CLI	on	the	Edge	node.	A	user	needs	to	provide	following	two	parameters	to	configure
in-band	management.							VLAN	for	management	traffic.							MAC	address	of	the	DPDK	Fast	Path	interface	chosen	for	this	management	traffic.		Figure	4‑37:	Bare	Metal	Edge	Management	Configuration	Choices	Additionally,	one	can	configure	the	management	redundancy	via	LAG,	however	only	one	of	the	LAG	members	can	be	active	at	a	time.	4.8.1.2							Single	N-VDS	Bare	Metal	Configuration	with	2	pNICs	Figure	4‑38:	Bare	Metal	Edge	Configured	for	Multi-TEP	-	Single	N-VDS	for	Overlay	and	External	Traffic	shows	2	pNIC	bare	metal	Edge	using	a	single	N-
VDS	design	for	data	plane.	The	left	side	of	the	diagram	shows	the	bare	metal	Edge	with	four	physical	NICs	where	management	traffic	has	dedicated	two	physical	NICs	(P1	&	P2)	configured	in	active/standby	mode.	A	single	N-VDS	“Overlay	and	External	N-VDS"	is	used	in	this	topology	that	carries	both	overlay	and	External	traffic.	Overlay	traffic	from	different	overlay	segments/logical	switches	gets	pinned	to	TEP	IP1	or	TEP	IP2	and	gets	load	balanced	across	both	uplinks,	Uplink1	and	Uplink2.	Notice	that,	both	TEP	IPs	use	same	transport	VLAN	i.e.	VLAN	200
which	is	configured	on	both	top	of	rack	switches.	Two	VLANs	segments,	i.e.	"External	VLAN	Segment	300"	and	"External	VLAN	Segment	400"	are	used	to	provide	northbound	connectivity	to	Tier-0	gateway.	Same	VLAN	segment	can	also	be	used	to	connect	Tier-0	Gateway	to	TOR-Left	and	TOR-Right,	however	it	is	not	recommended	because	of	inter-rack	VLAN	dependencies	leading	to	spanning	tree	related	convergence.	External	traffic	from	these	VLAN	segments	is	load	balanced	across	uplinks	using	named	teaming	policy	which	pins	a	VLAN	segment	to	a
specific	uplink.	This	topology	provides	redundancy	for	management,	overlay	and	external	traffic,	in	event	of	a	pNIC	failure	on	Edge	node/TOR	and	TOR	Failure.	The	right	side	of	the	diagram	shows	two	pNICs	bare	metal	edge	configured	with	the	same	N-VDS	“Overlay	and	External	N-VDS"	for	carrying	overlay	and	external	traffic	as	above	that	is	also	leveraging	in-band	management.			Figure	4‑38:	Bare	Metal	Edge	Configured	for	Multi-TEP	-	Single	N-VDS	for	Overlay	and	External	Traffic	(With	dedicated	pNICs	for	Management	and	In-Band	Management)	Both
above	topologies	use	the	same	transport	node	profile	as	shown	in	Figure	4‑39:	Bare	Metal	Edge	Transport	Node	Profile.	This	configuration	shows	a	default	teaming	policy	that	uses	both	Uplink1	and	Uplink2.	This	default	policy	is	used	for	all	the	segments/logical	switches	created	on	this	N-VDS.	Two	additional	teaming	policies,	“Vlan300-Policy”	and	“Vlan400-Policy”	have	been	defined	to	override	the	default	teaming	policy	and	send	traffic	to	“Uplink1”	and	“Uplink2”	respectively.	"External	VLAN	segment	300"	is	configured	to	use	the	named	teaming	policy
“Vlan300-Policy”	that	sends	traffic	from	this	VLAN	only	on	“Uplink1”.	"External	VLAN	segment	400"	is	configured	to	use	a	named	teaming	policy	“Vlan400-Policy”	that	sends	traffic	from	this	VLAN	only	on	“Uplink2”.	Based	on	these	teaming	policies,	TOR-Left	will	receive	traffic	for	VLAN	100	(Mgmt.),	VLAN	200	(overlay)	and	VLAN	300	(Traffic	from	VLAN	segment	300)	and	hence,	should	be	configured	for	these	VLANs.	Similarly,	TOR-Right	will	receive	traffic	for	VLAN	100	(Mgmt.),	VLAN	200	(overlay)	and	VLAN	400	(Traffic	from	VLAN	segment	400).	A	sample
configuration	screenshot	is	shown	below.																			Figure	4‑39:	Bare	Metal	Edge	Transport	Node	Profile	Figure	4‑40:	4-way	ECMP	Using	Bare	Metal	Edges	shows	a	logical	and	physical	topology	where	a	Tier-0	gateway	has	four	external	interfaces.	External	interfaces	1	and	2	are	provided	by	bare	metal	Edge	node	“EN1”,	whereas	External	interfaces	3	and	4	are	provided	by	bare	metal	Edge	node	“EN2”.	Both	the	Edge	nodes	are	in	the	same	rack	and	connect	to	TOR	switches	in	that	rack.	Both	the	Edge	nodes	are	configured	for	Multi-TEP	and	use	named
teaming	policy	to	send	traffic	from	VLAN	300	to	TOR-Left	and	traffic	from	VLAN	400	to	TOR-Right.	Tier-0	Gateway	establishes	BGP	peering	on	all	four	external	interfaces	and	provides	4-way	ECMP.	Figure	4‑40:	4-way	ECMP	Using	Bare	Metal	Edges	4.8.1.3							Single	N-VDS	Bare	Metal	Configuration	with	Six	pNICs	Figure	4‑41:	Bare	Metal	Edge	with	Six	pNICs	-	Same	N-VDS	for	Overlay	and	External	traffic	shows	NSX-T	bare	metal	Edge	with	six	physical	NICs.	Management	traffic	has	two	dedicated	pNICs	configured	in	Active/Standby.		Two	pNICs,	P3	and	P4
are	dedicated	for	overlay	traffic	and	two	pNICs	(P5	and	P6)	are	dedicated	for	external	traffic.	A	single	N-VDS	“Overlay	and	External	N-VDS"	is	used	in	this	topology	that	carries	both	overlay	and	External	traffic.	However,	different	uplinks	are	used	to	carry	overlay	and	external	traffic.	Multi-TEP	is	configured	to	provide	load	balancing	for	the	overlay	traffic	on	Uplink1	(mapped	to	pNIC	P3)	and	Uplink2	(mapped	to	pNIC	P4).	Notice	that,	both	TEP	IPs	use	same	transport	VLAN	i.e.	VLAN	200	which	is	configured	on	both	top	of	rack	switches.	Figure	4‑41:	Bare
Metal	Edge	with	Six	pNICs	-	Same	N-VDS	for	Overlay	and	External	traffic	also	shows	a	configuration	screenshot	of	named	teaming	policy	defining	two	additional	teaming	policies,	“Vlan300-Policy”	and	“Vlan400-Policy”.	"External	VLAN	segment	300"	is	configured	to	use	a	named	teaming	policy	“Vlan300-Policy”	that	sends	traffic	from	this	VLAN	only	on	Uplink3	(mapped	to	pNIC	P5).	"External	VLAN	segment	400"	is	configured	to	use	a	named	teaming	policy	“Vlan400-Policy”	that	sends	traffic	from	this	VLAN	only	on	Uplink4	(mapped	to	pNIC	P6).	Hence,	BGP
traffic	from	Tier-0	on	VLAN	300	always	goes	to	TOR-Left	and	BGP	traffic	from	Tier-0	on	VLAN	400	always	goes	to	TOR-Right.	This	topology	provides	redundancy	for	management,	overlay	and	external	traffic.	This	topology	also	provides	a	simple,	high	bandwidth	and	deterministic	design	as	there	are	dedicated	physical	NICs	for	different	traffic	types	(overlay	and	External	traffic).	Figure	4‑41:	Bare	Metal	Edge	with	Six	pNICs	-	Same	N-VDS	for	Overlay	and	External	traffic	4.8.2					VM	Edge	Node	NSX-T	VM	Edge	in	VM	form	factor	can	be	installed	using	an	OVA,
OVF,	or	ISO	file.	NSX-T	Edge	VM	is	only	supported	on	ESXi	host.	An	NSX-T	Edge	VM	has	four	internal	interfaces:	eth0,	fp-eth0,	fp-eth1,	and	fp-eth2.	Eth0	is	reserved	for	management,	while	the	rest	of	the	interfaces	are	assigned	to	DPDK	Fast	Path.	These	interfaces	are	allocated	for	external	connectivity	to	TOR	switches	and	for	NSX-T	overlay	tunneling.	There	is	complete	flexibility	in	assigning	Fast	Path	interfaces	(fp-eth)	for	overlay	or	external	connectivity.	As	an	example,	fp-eth0	could	be	assigned	for	overlay	traffic	with	fp-eth1,	fp-eth2,	or	both	for	external
traffic.	There	is	a	default	teaming	policy	per	N-VDS	that	defines	how	the	N-VDS	balances	traffic	across	its	uplinks.	This	default	teaming	policy	can	be	overridden	for	VLAN	segments	only	using	“named	teaming	policy”.	To	develop	desired	connectivity	(e.g.,	explicit	availability	and	traffic	engineering),	more	than	one	N-VDS	per	Edge	node	may	be	required.	Each	N-VDS	instance	can	have	a	unique	teaming	policy,	allowing	for	flexible	design	choices.	4.8.2.1							Multiple	N-VDS	per	Edge	VM	Configuration	–	NSX-T	2.4	or	Older	The	“three	N-VDS	per	Edge	VM
design”	as	commonly	called	has	been	deployed	in	production.	This	section	briefly	covers	the	design,	so	the	reader	does	not	miss	the	important	decision	which	design	to	adopt	based	on	NSX-T	release	target.	The	multiple	N-VDS	per	Edge	VM	design	recommendation	is	valid	regardless	of	the	NSX-T	release.	This	design	must	be	followed	if	the	deployment	target	is	NSX-T	release	2.4	or	older.	The	design	recommendation	is	still	completely	applicable	and	viable	to	Edge	VM	deployment	running	NSX-T	2.5	release.	In	order	to	simplify	consumption	for	the	new	design
recommendation,	the	pre-2.5	release	design	has	been	moved	to	Appendix	5.	The	design	choices	that	moved	to	appendix	covers							2	pNICs	bare	metal	design	necessitating	straight	through	LAG	topology							Edge	clustering	design	consideration	for	bare	metal							4	pNICs	bare	metal	design	added	to	support	existing	deployment							Edge	node	design	with	2	and	4	pNICs	It’s	a	mandatory	to	adopt	Appendix	5	recommendation	for	NSX-T	release	up	to	2.5.		The	newer	design	as	described	in	section	The	Design	Recommendation	with	Edge	Node	NSX-T	Release	2.5
Onward	will	not	operate	properly	if	adopted	in	release	before	NSX-T	2.5.			Figure	4‑42:	Edge	Node	VM	Installed	Leveraging	VDS	Port	Groups	on	a	2	pNIC	host	Figure	4‑42:	Edge	Node	VM	Installed	Leveraging	VDS	Port	Groups	on	a	2	pNIC	host	shows	an	ESXi	host	with	two	physical	NICs.	Edges	“VM1”	is	hosted	on	ESXi	host	leveraging	the	VDS	port	groups,	each	connected	to	both	TOR	switches.	This	figure	also	shows	three	N-VDS,	named	as	“Overlay	N-VDS”,	“Ext	1	N-VDS”,	and	“Ext	2	N-VDS”.	Three	N-VDS	are	used	in	this	design	to	ensure	that	overlay	and
external	traffic	use	different	vNIC	of	Edge	VM.	All	three	N-VDS	use	the	same	teaming	policy	i.e.	Failover	order	with	one	active	uplink.	4.8.2.2							VLAN	TAG	Requirements	Edge	VM	deployment	shown	in	Figure	4‑42:	Edge	Node	VM	Installed	Leveraging	VDS	Port	Groups	on	a	2	pNIC	host	remains	valid	and	is	ideal	for	deployments	where	only	one	VLAN	is	necessary	on	each	vNIC	of	the	Edge	VM.	However,	it	doesn’t	cover	all	the	deployment	use	cases.	For	instance,	if	a	user	cannot	add	service	interfaces	to	connect	VLAN	backed	workloads	in	above	topology	as
that	requires	to	allow	one	or	more	VLANs	on	the	VDS	DVPG	(distributed	virtual	port	group).	If	these	DVPGs	are	configured	to	allow	multiple	VLANs,	no	change	in	DVPG	configuration	is	needed	when	new	service	interfaces	(workload	VLAN	segments)	are	added.	When	these	DVPGs	are	configured	to	carry	multiple	VLANs,	a	VLAN	tag	is	expected	from	Edge	VM	for	traffic	belonging	to	different	VLANs.	VLAN	tags	can	be	applied	to	both	overlay	and	external	traffic	at	either	N-VDS	level	or	VSS/VDS	level.	On	N-VDS,	overlay	and	external	traffic	can	be	tagged	using
the	following	configuration:	Uplink	Profile	where	the	transport	VLAN	can	be	set	which	will	tag	overlay	traffic	only	VLAN	segment	connecting	Tier-0	gateway	to	external	devices-	This	configuration	will	apply	a	VLAN	tag	to	the	external	traffic	only.	Following	are	the	three	ways	to	configure	VLAN	tagging	on	VSS	or	VDS:	EST	(External	Switch	Tagging)	VST	(Virtual	Switch	Tagging)	VGT	(virtual	guest	tagging)	For	the	details	where	each	tagging	can	be	applicable	refer	to	following	resources:	Figure	4‑43:	VLAN	Tagging	on	Edge	Mode	shows	an	Edge	node	hosted
on	an	ESXi	host.	In	this	example,	VLAN	tags	are	applied	to	both	overlay	and	external	traffic	using	uplink	profile	and	VLAN	segments	connecting	Tier-0	Gateway	to	physical	infrastructure	respectively.	As	a	result,	VDS	port	groups	that	provides	connectivity	to	Edge	VM	receive	VLAN	tagged	traffic.	Hence,	they	should	be	configured	to	allow	these	VLANs	in	VGT	(Virtual	guest	tagging)	mode.	Uplink	profile	used	for	“Overlay	N-VDS”	has	a	transport	VLAN	defined	as	VLAN	200.	This	will	ensure	that	the	overlay	traffic	exiting	vNIC2	has	an	802.1Q	VLAN	200	tag.
Overlay	traffic	received	on	VDS	port	group	“Transport	PG”	is	VLAN	tagged.	That	means	that	this	Edge	VM	vNIC2	will	have	to	be	attached	to	a	port	group	configured	for	Virtual	Guest	Tagging	(VGT).	Tier-0	Gateway	connects	to	the	physical	infrastructure	using	“External-1”	and	“External-2”	interface	leveraging	VLAN	segments	“External	VLAN	Segment	300”	and	“External	VLAN	Segment	400”	respectively.	In	this	example,	“External	Segment	300”	and	“External	Segment	400”	are	configured	with	a	VLAN	tag,	300	and	400	respectively.	External	traffic	received
on	VDS	port	groups	“Ext1	PG”	and	Ext2	PG”	is	VLAN	tagged	and	hence,	these	port	groups	should	be	configured	in	VGT	(Virtual	guest	tagging)	mode	and	allow	those	specific	VLANs.	Figure	4‑43:	VLAN	Tagging	on	Edge	Mode	4.8.2.3							Single	N-VDS	Based	Configuration	-	Starting	with	NSX-T	2.5	release	Starting	NSX-T	2.4	release,	Edge	nodes	support	Multi-TEP	configuration	to	load	balance	overlay	traffic	for	segments/logical	switches.	Similar	to	the	bare	metal	Edge	one	N-VDS	design,	Edge	VM	also	supports	same	N-VDS	for	overlay	and	external	traffic.	Even
though	this	multi-TEP	feature	was	available	in	NSX-T	2.4	release,	the	release	that	supports	this	design	is	NSX-T	2.5	release	onward.	It	is	mandatory	to	use	the	multiple	VDS	design	for	release	NSX-T	2.4	or	older	as	described	in	Appendix	5.	Figure	4‑44:	VLAN	Tagging	on	Edge	Node	with	Single	N-VDS	shows	an	Edge	VM	with	one	N-VDS	i.e.	“Overlay	and	External	N-VDS”,	to	carry	both	overlay	and	external	traffic.	Multi-TEP	is	configured	to	provide	load	balancing	for	overlay	traffic	on	“Uplink1”	and	“Uplink2”.	“Uplink1”	and	“Uplink2”	are	mapped	to	use	vNIC2
and	vNIC3	respectively.		Based	on	this	teaming	policy,	overlay	traffic	will	be	sent	and	received	on	both	vNIC2	and	vNIC3	of	the	Edge	VM.	Notice	that,	both	TEP	IPs	use	same	transport	VLAN	i.e.	VLAN	200	which	is	configured	on	both	top	of	rack	switches.	Similar	to	Figure	4‑43:	VLAN	Tagging	on	Edge	Mode,	Tier-0	Gateway	for	BGP	peering	connects	to	the	physical	infrastructure	leveraging	VLAN	segments	“External	VLAN	Segment	300”	and	“External	VLAN	Segment	400”	respectively.	In	this	example,	“External	VLAN	Segment	300”	and	“External	VLAN
Segment	400”	are	configured	with	a	VLAN	tag,	300	and	400	respectively.	External	traffic	received	on	VDS	port	groups	“Trunk1	PG”	and	Trunk2	PG”	is	VLAN	tagged	and	hence,	these	port	groups	should	be	configured	in	VGT	(Virtual	guest	tagging)	mode	and	allow	those	specific	VLANs.	Named	teaming	policy	is	also	configured	to	load	balance	external	traffic.	Figure	4‑44:	VLAN	Tagging	on	Edge	Node	with	Single	N-VDS	also	shows	named	teaming	policy	configuration	used	for	this	topology.		"External	VLAN	segment	300"	is	configured	to	use	a	named	teaming
policy	“Vlan300-Policy”	that	sends	traffic	from	this	VLAN	on	“Uplink1”	(vNIC2	of	Edge	VM).	"External	VLAN	segment	400"	is	configured	to	use	a	named	teaming	policy	“Vlan400-Policy”	that	sends	traffic	from	this	VLAN	on	“Uplink2”	(vNIC3	of	Edge	VM).	Based	on	this	named	teaming	policy,	North-South	or	external	traffic	from	“External	VLAN	Segment	300”	will	always	be	sent	and	received	on	vNIC2	of	the	Edge	VM.	North-South	or	external	traffic	from	“External	VLAN	Segment	400”	will	always	be	sent	and	received	on	vNIC3	of	the	Edge	VM.	Overlay	or
external	traffic	from	Edge	VM	is	received	by	the	VDS	DVPGs	“Trunk1	PG”	and	“Trunk2	PG”.	Teaming	policy	used	on	the	VDS	port	group	level	defines	how	this	overlay	and	external	traffic	coming	from	Edge	node	VM	exits	the	hypervisor.	For	instance,	“Trunk1	PG”	is	configured	to	use	active	uplink	as	“VDS-Uplink1”	and	standby	uplink	as	“VDS-Uplink2”.	“Trunk2	PG”	is	configured	to	use	active	uplink	as	“VDS-Uplink2”	and	standby	uplink	as	“VDS-Uplink1”.	This	configuration	ensures	that	the	traffic	sent	on	“External	VLAN	Segment	300”	i.e.	VLAN	300	always
uses	vNIC2	of	Edge	VM	to	exit	Edge	VM.	This	traffic	then	uses	“VDS-Uplink1”	(based	on	“Trunk1	PG”	configuration)	and	is	sent	to	the	left	TOR	switch.	Similarly,	traffic	sent	on	VLAN	400	uses	“VDS-Uplink2”	and	is	sent	to	the	TOR	switch	on	the	right.	Figure	4‑44:	VLAN	Tagging	on	Edge	Node	with	Single	N-VDS	Starting	with	NSX-T	release	2.5,	single	N-VDS	deployment	mode	is	recommended	for	both	bare	metal	and	Edge	VM.	Key	benefits	of	single	N-VDS	deployment	are:	Consistent	deployment	model	for	both	Edge	VM	and	bare	metal	Edge	with	one	N-VDS
carrying	both	overlay	and	external	traffic.	Load	balancing	of	overlay	traffic	with	Multi-TEP	configuration.	Ability	to	distribute	external	traffic	to	specific	TORs	for	distinct	point	to	point	routing	adjacencies.	No	change	in	DVPG	configuration	when	new	service	interfaces	(workload	VLAN	segments)	are	added.	Deterministic	North	South	traffic	pattern.	Service	interface	were	introduced	earlier,	following	section	focusses	on	how	service	interfaces	work	in	the	topology	shown	in	Figure	4‑45:	VLAN	Tagging	on	Edge	Node	with	Service	Interface.	4.8.2.4							VLAN
Backed	Service	Interface	on	Tier-0	or	Tier-1	Gateway	Service	interface	is	an	interface	connecting	VLAN	backed	segments/logical	switch	to	provide	connectivity	to	VLAN	backed	physical	or	virtual	workloads.	This	interface	acts	as	a	gateway	for	these	VLAN	backed	workloads	and	is	supported	both	on	Tier-0	and	Tier-1	Gateways	configured	in	active/standby	HA	configuration	mode.	Service	interface	is	realized	on	Tier-0	SR	or	Tier-1	SR.	This	implies	that	traffic	from	a	VLAN	workload	needs	to	go	to	Tier-0	SR	or	Tier-1	SR	to	consume	any	centralized	service	or	to
communicate	with	any	other	VLAN	or	overlay	segments.	Tier-0	SR	or	Tier-1	SR	is	always	hosted	on	Edge	node	(bare	metal	or	Edge	VM).		Figure	4‑45:	VLAN	Tagging	on	Edge	Node	with	Service	Interface	shows	a	VLAN	segment	“VLAN	Seg-500”	that	is	defined	to	provide	connectivity	to	the	VLAN	workloads.	“VLAN	Seg-500”	is	configured	with	a	VLAN	tag	of	500.	Tier-0	gateway	has	a	service	interface	“Service	Interface-1”	configured	leveraging	this	VLAN	segment	and	acts	as	a	gateway	for	VLAN	workloads	connected	to	this	VLAN	segment.	In	this	example,	if
the	workload	VM,	VM1	needs	to	communicate	with	any	other	workload	VM	on	overlay	or	VLAN	segment,	the	traffic	will	be	sent	from	the	compute	hypervisor	(ESXi-2)	to	the	Edge	node	(hosted	on	ESXi-1).	This	traffic	is	tagged	with	VLAN	500	and	hence	the	DVPG	receiving	this	traffic	(“Trunk-1	PG”	or	“Trunk-2	PG”)	must	be	configured	in	VST	(Virtual	Switch	Tagging)	mode.	Adding	more	service	interfaces	on	Tier-0	or	Tier-1	is	just	a	matter	of	making	sure	that	the	specific	VLAN	is	allowed	on	DVPG	(“Trunk-1	PG”	or	“Trunk-2	PG”).	Figure	4‑45:	VLAN	Tagging	on
Edge	Node	with	Service	Interface	Note:	Service	interface	can	also	be	connected	to	overlay	segments	for	standalone	load	balancer	use	cases.	This	is	explained	in	Load	balancer	Chapter	6.	4.8.3					Edge	Cluster	An	Edge	cluster	is	a	group	of	Edge	transport	nodes.	It	provides	scale	out,	redundant,	and	high-throughput	gateway	functionality	for	logical	networks.	Scale	out	from	the	logical	networks	to	the	Edge	nodes	is	achieved	using	ECMP.	NSX-T	2.3	introduced	the	support	for	heterogeneous	Edge	nodes	which	facilitates	easy	migration	from	Edge	node	VM	to	bare
metal	Edge	node	without	reconfiguring	the	logical	routers	on	bare	metal	Edge	nodes.	There	is	a	flexibility	in	assigning	Tier-0	or	Tier-1	gateways	to	Edge	nodes	and	clusters.	Tier-0	and	Tier-1	gateways	can	be	hosted	on	either	same	or	different	Edge	clusters.	Figure	4‑46:	Edge	Cluster	with	Tier-0	and	Tier	1	Services	Depending	upon	the	services	hosted	on	the	Edge	node	and	their	usage,	an	Edge	cluster	could	be	dedicated	simply	for	running	centralized	services	(e.g.,	NAT).	Figure	4‑47:	Multiple	Edge	Clusters	with	Dedicated	Tier-0	and	Tier-1	Services	shows	two
clusters	of	Edge	nodes.	Edge	Cluster	1	is	dedicated	for	Tier-0	gateways	only	and	provides	external	connectivity	to	the	physical	infrastructure.	Edge	Cluster	2	is	responsible	for	NAT	functionality	on	Tier-1	gateways.			Figure	4‑47:	Multiple	Edge	Clusters	with	Dedicated	Tier-0	and	Tier-1	Services	There	can	be	only	one	Tier-0	gateway	per	Edge	node;	however,	multiple	Tier-1	gateways	can	be	hosted	on	one	Edge	node.	A	maximum	of	10	Edge	nodes	can	be	grouped	in	an	Edge	cluster.	A	Tier-0	gateway	supports	a	maximum	of	eight	equal	cost	paths,	thus	a	maximum
of	eight	Edge	nodes	are	supported	for	ECMP.	Edge	nodes	in	an	Edge	cluster	run	Bidirectional	Forwarding	Detection	(BFD)	on	both	tunnel	and	management	networks	to	detect	Edge	node	failure.	The	BFD	protocol	provides	fast	detection	of	failure	for	forwarding	paths	or	forwarding	engines,	improving	convergence.	Edge	VMs	support	BFD	with	minimum	BFD	timer	of	50ms	with	three	retries,	providing	a	1.5	second	failure	detection	time.	Bare	metal	Edges	support	BFD	with	minimum	BFD	TX/RX	timer	of	50ms	with	three	retries	which	implies	150ms	failure
detection	time.	4.8.4					Failure	Domain	Failure	domain	is	a	logical	grouping	of	Edge	nodes	within	an	Edge	Cluster.	This	feature	is	introduced	in	NSX-T	2.5	release	and	can	be	enabled	on	Edge	cluster	level	via	API	configuration.	Please	refer	to	this	API	configuration	available	in	Appendix	3.	As	discussed	in	high	availability	section,	a	Tier-1	gateway	with	centralized	services	runs	on	Edge	nodes	in	active/standby	HA	configuration	mode.	When	a	user	assigns	a	Tier-1	gateway	to	an	Edge	cluster,	NSX	manager	automatically	chooses	the	Edge	nodes	in	the	cluster	to
run	the	active	and	standby	Tier-1	SR.	The	auto	placement	of	Tier-1	SRs	on	different	Edge	nodes	considers	several	parameters	like	Edge	capacity,	active/standby	HA	state	etc.	Failure	domains	compliment	auto	placement	algorithm	and	guarantee	service	availability	in	case	of	a	rack	failure.	Active	and	standby	instance	of	a	Tier-1	SR	always	run	in	different	failure	domains.	Figure	4‑48:	Failure	Domains	shows	an	edge	cluster	comprised	of	four	Edge	nodes,	EN1,	EN2,	EN3	and	EN4.	EN1	and	EN2	connected	to	two	TOR	switches	in	rack	1	and	EN3	and	EN4
connected	to	two	TOR	switches	in	rack	2.	Without	failure	domain,	a	Tier-1	SR	could	be	auto	placed	in	EN1	and	EN2.	If	rack1	fails,	both	active	and	standby	instance	of	this	Tier-1	SR	fail	as	well.	EN1	and	EN2	are	configured	to	be	a	part	of	failure	domain	1,	while	EN3	and	EN4	are	in	failure	domain	2.	When	a	new	Tier-1	SR	is	created	and	if	active	instance	of	that	Tier-1	is	hosted	on	EN1,	then	the	standby	Tier-1	SR	will	be	instantiated	in	failure	domain	2	(EN3	or	EN4).	Figure	4‑48:	Failure	Domains	To	ensure	that	all	Tier-1	services	are	active	on	a	set	of	edge
nodes,	a	user	can	also	enforce	that	all	active	Tier-1	SRs	are	placed	in	one	failure	domain.	This	configuration	is	supported	for	Tier-1	gateway	in	preemptive	mode	only.	4.9						Other	Network	Services	4.9.1					Unicast	Reverse	Path	Forwarding	(uRPF)	A	router	forwards	packets	based	on	the	value	of	the	destination	IP	address	field	that	is	present	in	the	IP	header.	The	source	IP	address	field	is	generally	not	used	when	forwarding	a	packet	on	a	network	(except	when	networks	implement	source-based	routing).	Unicast	Reverse	Path	Forwarding	is	defined	in	RFC
2827	and	3704.	It	prevents	packets	with	spoofed	source	IP	address	to	be	forwarded	in	the	network.	uRPF	is	generally	enabled	on	a	router	per	interface	and	not	globally.	A	uRPF	enabled	router	will	inspect	the	source	IP	address	of	each	packet	received	on	an	interface.	When	a	packet	arrives	on	an	interface,	the	router	will	verify	if	the	receiving	that	specific	interface	would	be	used	to	reach	the	source	of	the	packet.	It	will	discard	the	packets	if	the	received	and	routing	table	interfaces	are	different.	This	protection	prevents	spoofed	source	IP	address	attacks	that
are	commonly	used	by	sending	packets	with	random	source	IP	addresses.	Figure	4‑49	–	uRPF	diagrams	a	physical	network	with	uRPF	enabled	on	the	core	router.	1-					The	core	router	receives	a	packet	with	a	source	IP	address	of	10.1.1.1	on	interface	ethernet0/2.	2-					The	core	router	has	the	uRPF	feature	enabled	on	all	its	interfaces	and	will	check	in	its	routing	table	if	the	source	IP	address	of	the	packet	would	be	routed	through	interface	ethernet	0/2.	In	this	case,	10.1.1.1	is	the	source	IP	address	present	in	the	IP	header.	The	core	router	has	a	longest	prefix
match	for	10.1.1.0/24	via	interface	ethernet	0/0.	3-					Since	the	packet	does	not	come	from	the	interface	ethernet	0/0,	the	packet	will	be	discarded.	Figure	4‑49	–	uRPF	In	NSX-T,	uRPF	is	enabled	by	default	on	external,	internal	and	service	interfaces.	From	a	security	standpoint,	it	is	a	best	practice	to	keep	uRPF	enabled	on	these	interfaces.	uRPF	is	also	recommended	in	architectures	that	leverage	ECMP.	On	intra-tier	and	router	link	interfaces,	a	simplified	anti-spoofing	mechanism	is	implemented.	It	is	checking	that	a	packet	is	never	sent	back	to	the	interface
the	packet	was	received	on.	It	is	possible	to	disable	uRPF	in	complex	routing	architecture	where	asymmetric	routing	exists.	As	of	NSX-T	3.0,	it	is	possible	to	disable	or	enable	uRPF	on	the	Policy	UI	except	for	downlink	interfaces	where	the	administrator	would	need	to	use	the	Manager	UI	or	Policy	API.	4.9.2					Network	Address	Translation	Users	can	enable	NAT	as	a	network	service	on	NSX-T.	This	is	a	centralized	service	which	can	be	enabled	on	both	Tier-0	and	Tier-1	gateways.	Supported	NAT	rule	types	include:	●							Source	NAT	(SNAT):	Source	NAT
translates	the	source	IP	of	the	outbound	packets	to	a	known	public	IP	address	so	that	the	application	can	communicate	with	the	outside	world	without	using	its	private	IP	address.	It	also	keeps	track	of	the	reply.	●							Destination	NAT	(DNAT):	DNAT	allows	for	access	to	internal	private	IP	addresses	from	the	outside	world	by	translating	the	destination	IP	address	when	inbound	communication	is	initiated.	It	also	takes	care	of	the	reply.	For	both	SNAT	and	DNAT,	users	can	apply	NAT	rules	based	on	5	tuple	match	criteria.	●							Reflexive	NAT:	Reflexive	NAT	rules
are	stateless	ACLs	which	must	be	defined	in	both	directions.	These	do	not	keep	track	of	the	connection.	Reflexive	NAT	rules	can	be	used	in	cases	where	stateful	NAT	cannot	be	used	due	to	asymmetric	paths	(e.g.,	user	needs	to	enable	NAT	on	active/active	ECMP	routers).			Table	4‑3:	NAT	Usage	Guidelines	summarizes	NAT	rules	and	usage	restrictions.	NAT	Rules	Type	Type	Specific	Usage	Guidelines	Stateful	Source	NAT	(SNAT)	Destination	NAT	(DNAT)	Can	be	enabled	on	both	Tier-0	and	Tier-1	gateways	Stateless	Reflexive	NAT	Can	be	enabled	on	Tier-0
gateway;	generally	used	when	the	Tier-0	is	in	active/active	mode.	Table	4‑3:	NAT	Usage	Guidelines	Table	4‑4:	Tier-0	and	Tier-1	NAT	Use	Cases	summarizes	the	use	cases	and	advantages	of	running	NAT	on	Tier-0	and	Tier-1	gateways.	Gateway	Type	NAT	Rule	Type	Specific	Usage	Guidelines	Tier-0	Stateful	Recommended	for	TAS/TKGI	deployments.	E-W	routing	between	different	tenants	remains	completely	distributed.	Tier-1	Stateful	Recommended	for	high	throughput	ECMP	topologies.	Recommended	for	topologies	with	overlapping	IP	address	space.	Table	4‑4:
Tier-0	and	Tier-1	NAT	Use	Cases	NAT	Service	Router	Placement	As	a	centralized	service,	whenever	NAT	is	enabled,	a	service	component	or	SR	must	be	instantiated	on	an	Edge	cluster.	In	order	to	configure	NAT,	specify	the	Edge	cluster	where	the	service	should	run;	it	is	also	possible	the	NAT	service	on	a	specific	Edge	node	pair.	If	no	specific	Edge	node	is	identified,	the	platform	will	perform	auto	placement	of	the	services	component	on	an	Edge	node	in	the	cluster	using	a	weighted	round	robin	algorithm.	4.9.3					DHCP	Services	NSX-T	provides	both	DHCP
relay	and	DHCP	server	functionality.	DHCP	relay	can	be	enabled	at	the	gateway	level	and	can	act	as	relay	between	non-NSX	managed	environment	and	DHCP	servers.	DHCP	server	functionality	can	be	enabled	to	service	DHCP	requests	from	VMs	connected	to	NSX-managed	segments.	DHCP	server	functionality	is	a	stateful	service	and	must	be	bound	to	an	Edge	cluster	or	a	specific	pair	of	Edge	nodes	as	with	NAT	functionality.	4.9.4					Metadata	Proxy	Service	With	a	metadata	proxy	server,	VM	instances	can	retrieve	instance-specific	metadata	from	an
OpenStack	Nova	API	server.	This	functionality	is	specific	to	OpenStack	use-cases	only.	Metadata	proxy	service	runs	as	a	service	on	an	NSX	Edge	node.	For	high	availability,	configure	metadata	proxy	to	run	on	two	or	more	NSX	Edge	nodes	in	an	NSX	Edge	cluster.	4.9.5					Gateway	Firewall	Service	Gateway	Firewall	service	can	be	enabled	on	the	Tier-0	and	Tier-1	gateway	for	North-South	firewalling.	Table	4-5	summarizes	Gateway	Firewalling	usage	criteria.	Gateway	Firewall	Specific	Usage	Guidelines	Stateful	Can	be	enabled	on	both	Tier-0	and	Tier-1	gateways.
Stateless	Can	be	enabled	on	Tier-0	gateway;	generally	used	when	the	Tier-0	is	in	active/active	mode.	Table	4‑5:	Gateway	Firewall	Usage	Guideline	Since	Gateway	Firewalling	is	a	centralized	service,	it	needs	to	run	on	an	Edge	cluster	or	a	set	of	Edge	nodes.	This	service	is	described	in	more	detail	in	the	NSX-T	Security	chapter.	4.9.6					Proxy	ARP	Proxy	ARP	is	a	method	that	consist	of	answering	an	ARP	request	on	behalf	of	another	host.	This	method	is	performed	by	a	layer	3	networking	device	(usually	a	router).	The	purpose	is	to	provide	connectivity	between	2
hosts	when	routing	wouldn’t	be	possible	for	various	reasons.	Proxy	ARP	in	an	NSX-T	infrastructure	can	be	considered	in	environments	where	IP	subnets	are	limited.	Proof	of	concepts	and	VMware	Enterprise	TKGI	(PKS)	environments	are	usually	using	Proxy-ARP	to	simplify	the	network	topology.	For	production	environment,	it	is	recommended	to	implement	proper	routing	between	a	physical	fabric	and	the	NSX-T	Tier-0	by	using	either	static	routes	or	Border	Gateway	Protocol	with	BFD.	If	proper	routing	is	used	between	the	Tier-0	gateway	and	the	physical
fabric,	BFD	with	its	sub-second	timers	will	converge	faster.	In	case	of	failover	with	proxy	ARP,	the	convergence	relies	on	gratuitous	ARP	(broadcast)	to	update	all	hosts	on	the	VLAN	segment	with	the	new	MAC	Address	to	use.	If	the	Tier-0	gateway	has	proxy	ARP	enabled	for	100	IP	addresses,	the	newly	active	Tier-0	SR	needs	to	send	100	Gratuitous	ARP	packets.	Edge	Node	HA	Specific	Usage	Guidelines	Active	/	Standby	Supported	Active	/	Active	Not	supported	Table	4‑6:	Proxy	ARP	Support	By	enabling	proxy-ARP,	hosts	on	the	overlay	segments	and	hosts	on	a
VLAN	segment	can	exchange	network	traffic	together	without	implementing	any	change	in	the	physical	networking	fabric.	Proxy	ARP	is	automatically	enabled	when	a	NAT	rule	or	a	load	balancer	VIP	uses	an	IP	address	from	the	subnet	of	the	Tier-0	gateway	uplink.	Figure	4‑50:	Proxy	ARP	Topology	presents	the	logical	packet	flow	between	a	virtual	machine	connected	to	an	NSX-T	overlay	segment	and	a	virtual	machine	or	physical	appliance	connected	to	a	VLAN	segment	shared	with	the	NSX-T	Tier-0	uplinks.	In	this	example,	the	virtual	machine	connected	to
the	overlay	segment	initiates	networking	traffic	toward	20.20.20.100.	Figure	4‑50:	Proxy	ARP	Topology	The	virtual	machine	connected	to	the	overlay	segment	with	an	IP	address	of	172.16.10.10	sends	a	packet	to	the	physical	appliance	“SRV01”	with	an	IP	address	of	20.20.20.100.	the	local	DR	hosted	on	the	local	hypervisor	performs	a	routing	lookup	and	sends	the	traffic	to	the	SR.	The	SR	hosted	on	an	edge	node	translates	the	source	IP	of	172.16.10.10	with	a	value	of	20.20.20.10	and	sends	the	traffic	to	the	Tier-0.	Tier-0	SR	has	proxy	ARP	enabled	on	its	uplink
interface	and	will	send	an	ARP	request	(broadcast)	on	the	vlan	segment	to	map	the	IP	address	of	20.20.20.100	with	the	correct	MAC	address.	The	physical	appliance	“SRV01”	answers	to	that	ARP	request	with	an	ARP	reply.	Tier-0	SR	sends	the	packet	to	the	physical	appliance	with	a	source	IP	of	20.20.20.10	and	a	destination	IP	of	20.20.20.100.	The	physical	appliance	“SRV01”	receives	the	packet	and	sends	an	ARP	broadcast	on	the	VLAN	segment	to	map	the	IP	address	of	the	virtual	machine	(20.20.20.10)	to	the	corresponding	MAC	address.	Tier-0	receives	the
ARP	request	for	20.20.20.10	(broadcast)	and	has	the	proxy	ARP	feature	enabled	on	its	uplink	interfaces.	It	replies	to	the	ARP	request	with	an	ARP	reply	that	contains	the	Tier-0	SR	MAC	address	for	the	interface	uplink.	The	physical	appliance	“SRV01”	receives	the	ARP	request	and	sends	a	packet	on	the	vlan	segment	with	a	source	IP	of	20.20.20.100	and	a	destination	IP	of	20.20.20.10.	The	packet	is	being	received	by	the	Tier-0	SR	and	is	being	routed	to	the	Tier-1	who	does	translate	the	Destination	IP	of	20.20.20.10	with	a	value	of	172.16.10.10.	Packet	is	sent	to
the	overlay	segment	and	the	virtual	machine	receives	it.	It	is	crucial	to	note	that	in	this	case,	the	traffic	is	initiated	by	the	virtual	machine	which	is	connected	to	the	overlay	segment	on	the	Tier-1.	If	the	initial	traffic	was	initiated	by	a	server	on	the	VLAN	segment,	a	Destination	NAT	rule	would	have	been	required	on	the	Tier-1/Tier-0	since	the	initial	traffic	would	not	match	the	SNAT	rule	that	has	been	configured	previously.	Figure	4‑51:	Edge	Node	Failover	and	Proxy	ARP	represents	an	outage	on	an	active	Tier-0	gateway	with	Proxy	ARP	enabled.	The	newly
active	Tier-0	gateway	will	send	a	gratuitous	ARP	to	announce	the	new	MAC	address	to	be	used	by	the	hosts	on	the	VLAN	segment	in	order	to	reach	the	virtual	machine	connected	to	the	overlay.	It	is	critical	to	fathom	that	the	newly	active	Tier-0	will	send	a	Gratuitous	ARP	for	each	IP	address	that	are	configured	for	Proxy	ARP.	Figure	4‑51:	Edge	Node	Failover	and	Proxy	ARP	4.10		Topology	Consideration	This	section	covers	a	few	of	the	many	topologies	that	customers	can	build	with	NSX-T.	NSX-T	routing	components	-	Tier-1	and	Tier-0	gateways	-	enable	flexible
deployment	of	multi-tiered	routing	topologies.	Topology	design	also	depends	on	what	services	are	enabled	and	where	those	services	are	provided	at	the	provider	or	tenant	level.	4.10.1	Supported	Topologies	Figure	4‑52:	Single	Tier	and	Multi-tier	Routing	Topologies	shows	three	topologies	with	Tier-0	gateway	providing	N-S	traffic	connectivity	via	multiple	Edge	nodes.	The	first	topology	is	single-tiered	where	Tier-0	gateway	connects	directly	to	the	segments	and	provides	E-W	routing	between	subnets.	Tier-0	gateway	provides	multiple	active	paths	for	N-S	L3
forwarding	using	ECMP.	The	second	topology	shows	the	multi-tiered	approach	where	Tier-0	gateway	provides	multiple	active	paths	for	L3	forwarding	using	ECMP	and	Tier-1	gateways	as	first	hops	for	the	segments	connected	to	them.	Routing	is	fully	distributed	in	this	multi-tier	topology.	The	third	topology	shows	a	multi-tiered	topology	with	Tier-0	gateway	configured	in	Active/Standby	HA	mode	to	provide	some	centralized	or	stateful	services	like	NAT,	VPN	etc.	Figure	4‑52:	Single	Tier	and	Multi-tier	Routing	Topologies	As	discussed	in	the	two-tier	routing
section,	centralized	services	can	be	enabled	on	Tier-1	or	Tier-0	gateway	level.	Figure	4‑52:	Single	Tier	and	Multi-tier	Routing	Topologies	shows	two	multi-tiered	topologies.	The	first	topology	shows	centralized	services	like	NAT,	load	balancer	on	Tier-1	gateways	while	Tier-0	gateway	provides	multiple	active	paths	for	L3	forwarding	using	ECMP.	The	second	topology	shows	centralized	services	configured	on	a	Tier-1	and	Tier-0	gateway.	In	NSX-T	2.4	release	or	earlier,	some	centralized	services	are	only	available	on	Tier-1	like	load	balancer	and	other	only	on	Tier-
0	like	VPN.	Starting	NSX-T	2.5	release,	below	topology	can	be	used	where	requirement	is	to	use	both	Load	balancer	and	VPN	service	on	NSX-T.	Note	that	VPN	is	available	on	Tier-1	gateways	starting	NSX-T	2.5	release.	Figure	4‑53:	Stateful	and	Stateless	(ECMP)	Services	Topologies	Choices	at	Each	Tier	Figure	4‑54:	Multiple	Tier-0	Topologies	with	Stateful	and	Stateless	(ECMP)	Services	shows	a	topology	with	Tier-0	gateways	connected	back	to	back.	“Tenant-1	Tier-0	Gateway”	is	configured	for	a	stateful	firewall	while	“Tenant-2	Tier-0	Gateway”	has	stateful
NAT	configured.	Since	stateful	services	are	configured	on	both	“Tenant-1	Tier-0	Gateway”	and	“Tenant-2	Tier-0	Gateway”,	they	are	configured	in	Active/Standby	high	availability	mode.	The	top	layer	of	Tier-0	gateway,	"Aggregate	Tier-0	Gateway”	provides	ECMP	for	North-South	traffic.	Note	that	only	external	interfaces	should	be	used	to	connect	a	Tier-0	gateway	to	another	Tier-0	gateway.	Static	routing	and	BGP	are	supported	to	exchange	routes	between	two	Tier-0	gateways	and	full	mesh	connectivity	is	recommended	for	optimal	traffic	forwarding.	This
topology	provides	high	N-S	throughput	with	centralized	stateful	services	running	on	different	Tier-0	gateways.	This	topology	also	provides	complete	separation	of	routing	tables	on	the	tenant	Tier-0	gateway	level	and	allows	services	that	are	only	available	on	Tier-0	gateways	(like	VPN	until	NSX-T	2.4	release)	to	leverage	ECMP	northbound.	Note	that	VPN	is	available	on	Tier-1	gateways	starting	NSX-T	2.5	release.	NSX-T	3.0	introduces	new	multi	tenancy	features	such	as	EVPN	and	VRF-lite.	These	features	are	recommended	and	suitable	for	true	multi-tenant
architecture	where	stateful	services	need	to	be	run	on	multiple	layers	or	Tier-0		Full	mesh	connectivity	is	recommended	for	optimal	traffic	forwarding.	Figure	4‑54:	Multiple	Tier-0	Topologies	with	Stateful	and	Stateless	(ECMP)	Services	Figure	4‑55:	Multiple	Tier-0	Topologies	with	Stateful	and	Stateless	(ECMP)	Services	shows	another	topology	with	Tier-0	gateways	connected	back	to	back.	“Corporate	Tier-0	Gateway”	on	Edge	cluster-1	provides	connectivity	to	the	corporate	resources	(172.16.0.0/16	subnet)	learned	via	a	pair	of	physical	routers	on	the	left.	This
Tier-0	has	stateful	Gateway	Firewall	enabled	to	allow	access	to	restricted	users	only.	“WAN	Tier-0	Gateway”	on	Edge-Cluster-2	provides	WAN	connectivity	via	WAN	routers	and	is	also	configured	for	stateful	NAT.	“Aggregate	Tier-0	gateway”	on	the	Edge	cluster-3	learns	specific	routes	for	corporate	subnet	(172.16.0.0/16)	from	“Corporate	Tier-0	Gateway”	and	a	default	route	from	“WAN	Tier-0	Gateway”.	“Aggregate	Tier-0	Gateway”	provides	ECMP	for	both	corporate	and	WAN	traffic	originating	from	any	segments	connected	to	it	or	connected	to	a	Tier-1
southbound.	Full	mesh	connectivity	is	recommended	for	optimal	traffic	forwarding.	Figure	4‑55:	Multiple	Tier-0	Topologies	with	Stateful	and	Stateless	(ECMP)	Services	4.10.2		Unsupported	Topologies	While	the	deployment	of	logical	routing	components	enables	customers	to	deploy	flexible	multi-tiered	routing	topologies,	Figure	4‑56:	Unsupported	Topologies	presents	topologies	that	are	not	supported.	The	topology	on	the	left	shows	that	a	tenant	Tier-1	gateway	cannot	be	connected	directly	to	another	tenant	Tier-1	gateway.	If	the	tenants	need	to	communicate,
route	exchanges	between	two	tenants	Tier-1	gateway	must	be	facilitated	by	the	Tier-0	gateway.	The	rightmost	topology	highlights	that	a	Tier-1	gateway	cannot	be	connected	to	two	different	upstream	Tier-0	gateways.			Figure	4‑56:	Unsupported	Topologies	In	addition	to	providing	network	virtualization,	NSX-T	also	serves	as	an	advanced	security	platform,	providing	a	rich	set	of	features	to	streamline	the	deployment	of	security	solutions.	This	chapter	focuses	on	NSX-T	security	capabilities,	architecture,	components,	and	implementation.	Key	concepts	for
examination	include:	●							NSX-T	distributed	firewall	(DFW)	provides	stateful	protection	of	the	workload	at	the	vNIC	level.	For	ESXi,	the	DFW	enforcement	occurs	in	the	hypervisor	kernel,	helping	deliver	micro-segmentation.	However,	the	DFW	extends	to	physical	servers,	KVM	hypervisors,	containers,	and	public	clouds	providing	distributed	policy	enforcement.	●							Uniform	security	policy	model	for	on-premises	and	cloud	deployment,	supporting	multi-hypervisor	(i.e.,	ESXi	and	KVM)	and	multi-workload,	with	a	level	of	granularity	down	to
VM/containers/bare	metal	attributes.	●							Agnostic	to	compute	domain	-	supporting	hypervisors	managed	by	different	compute-managers	while	allowing	any	defined	micro-segmentation	policy	to	be	applied	across	hypervisors	spanning	multiple	vCenter	environments.	●							Support	for	Layer	3,	Layer	4,	Layer-7	APP-ID,	&	Identity	based	firewall	policies	provide	security	via	protocol,	port,	and	or	deeper	packet/session	intelligence	to	suit	diverse	needs.	●							NSX-T	Gateway	firewall	serves	as	a	centralized	stateful	firewall	service	for	N-S	traffic.	Gateway	firewall
is	implemented	per	gateway	and	supported	at	both	Tier-0	and	Tier-1.	Gateway	firewall	is	independent	of	NSX-T	DFW	from	policy	configuration	and	enforcement	perspective,	providing	a	means	for	defining	perimeter	security	control	in	addition	to	distributed	security	control.	●							Gateway	&	Distributed	Firewall	Service	insertion	capability	to	integrate	existing	security	investments	using	integration	with	partner	ecosystem	products	on	a	granular	basis	without	the	need	for	interrupting	natural	traffic	flows.	●							Distributed	IDS	extends	IDS	capabilities	to	every
host	in	the	environment.	●							Dynamic	grouping	of	objects	into	logical	constructs	called	Groups	based	on	various	criteria	including	tag,	virtual	machine	name	or	operating	system,	subnet,	and	segments	which	automates	policy	application.	●							The	scope	of	policy	enforcement	can	be	selective,	with	application	or	workload-level	granularity.	●							Firewall	Flood	Protection	capability	to	protect	the	workload	&	hypervisor	resources.	●							IP	discovery	mechanism	dynamically	identifies	workload	addressing.	●							SpoofGuard	blocks	IP	spoofing	at	vNIC	level.
●							Switch	Security	provides	storm	control	and	security	against	unauthorized	traffic.	5.1						NSX-T	Security	Use	Cases	The	NSX-T	security	platform	is	designed	to	address	the	security	challenges	faced	by	IT	admins.		Although	it	started	with	firewalling,	the	NSX-T	security	feature	set	has	since	grown	to	encompass	Identity	Firewalling,	IPS,	and	many	more.	The	NSX-T	firewall	is	delivered	as	part	of	a	distributed	platform	that	offers	ubiquitous	enforcement,	scalability,	line	rate	performance,	multi-hypervisor	support,	and	API-driven	orchestration.	These
fundamental	pillars	of	the	NSX-T	firewall	allow	it	to	address	many	different	use	cases	for	production	deployment.	One	of	the	leading	use	cases	NSX-T	supports	is	micro-segmentation.	Micro-segmentation	enables	an	organization	to	logically	divide	its	data	center	into	distinct	security	segments	down	to	the	individual	workload	level,	then	define	distinct	security	controls	for	and	deliver	services	to	each	unique	segment.		This	is	all	possible	without	the	need	to	change	underlying	network	architecture	or	addressing.	A	central	benefit	of	micro-segmentation	is	its
ability	to	deny	attackers	the	opportunity	to	pivot	laterally	within	the	internal	network,	even	after	the	perimeter	has	been	breached.	VMware	NSX-T	supports	micro-segmentation	as	it	allows	for	a	centrally	controlled,	operationally	distributed	firewall	to	be	attached	directly	to	workloads	within	an	organization’s	network.	The	distribution	of	the	firewall	for	the	application	of	security	policy	to	protect	individual	workloads	is	highly	efficient;	rules	can	be	applied	that	are	specific	to	the	requirements	of	each	workload.	Of	additional	value	is	that	NSX’s	capabilities	are
not	limited	to	homogeneous	vSphere	environments.	NSX	supports	the	heterogeneity	of	platforms	and	infrastructure	that	is	common	in	organizations	today.	Figure	5‑1:	Example	of	Micro-segmentation	with	NSX	Micro-segmentation	provided	by	NSX-T	is	an	essential	element	of	zero	trust,	specifically	it	embodies	“making	the	access	control	enforcement	as	granular	as	possible.”	(NIST	ZTA	publication).	It	establishes	a	security	perimeter	around	each	VM	or	container	workload	with	a	dynamically	defined	policy	which	can	be	down	to	the	user	level	of	granularity.
Legacy	security	models	assume	that	everything	on	the	inside	of	an	organization's	network	can	be	trusted;	zero-trust	assumes	the	opposite	-	trust	nothing	and	verify	everything.	This	addresses	the	increased	sophistication	of	networks	attacks	and	insider	threats	that	frequently	exploit	the	conventional	perimeter-controlled	approach.	For	each	system	in	an	organization's	network,	trust	of	the	underlying	network	is	removed.	A	perimeter	is	defined	per	system	within	the	network	to	limit	the	possibility	of	lateral	(i.e.,	East-West)	movement	of	an	attacker.
Implementation	of	a	zero-trust	architecture	with	traditional	network	security	solutions	can	be	costly,	complex,	and	come	with	a	high	management	burden.	Moreover,	the	lack	of	visibility	for	organization's	internal	networks	can	slow	down	implementation	of	a	zero-trust	architecture	and	leave	gaps	that	may	only	be	discovered	after	they	have	been	exploited.	Additionally,	conventional	internal	perimeters	may	have	granularity	only	down	to	a	VLAN	or	subnet	–	as	is	common	with	many	traditional	DMZs	–	rather	than	down	to	the	individual	system.	5.2						NSX-T
DFW	Architecture	and	Components	The	NSX-T	DFW	architecture	management	plane,	control	plane,	and	data	plane	work	together	to	enable	a	centralized	policy	configuration	model	with	distributed	firewalling.	This	section	will	examine	the	role	of	each	plane	and	its	associated	components,	detailing	how	they	interact	with	each	other	to	provide	a	scalable,	topology	agnostic	distributed	firewall	solution.	Figure	5‑2:	NSX-T	DFW	Architecture	and	Components	5.2.1					Management	Plane	The	NSX-T	management	plane	is	implemented	through	NSX-T	Managers.	NSX-
T	Managers	are	deployed	as	a	cluster	of	3	manager	nodes.	Access	to	the	NSX-T	Manager	is	available	through	a	GUI	or	REST	API	framework.	When	a	firewall	policy	rule	is	configured,	the	NSX-T	management	plane	service	validates	the	configuration	and	locally	stores	a	persistent	copy.	Then	the	NSX-T	Manager	pushes	user-published	policies	to	the	control	plane	service	within	Manager	Cluster	which	in	turn	pushes	to	the	data	plane.	A	typical	DFW	policy	configuration	consists	of	one	or	more	sections	with	a	set	of	rules	using	objects	like	Groups,	Segments,	and
application	level	gateway	(ALGs).	For	monitoring	and	troubleshooting,	the	NSX-T	Manager	interacts	with	a	host-based	management	plane	agent	(MPA)	to	retrieve	DFW	status	along	with	rule	and	flow	statistics.	The	NSX-T	Manager	also	collects	an	inventory	of	all	hosted	virtualized	workloads	on	NSX-T	transport	nodes.	This	is	dynamically	collected	and	updated	from	all	NSX-T	transport	nodes.	5.2.2					Control	Plane	The	NSX-T	control	plane	consists	of	two	components	-	the	central	control	plane	(CCP)	and	the	Local	Control	Plane	(LCP).	The	CCP	is	implemented
on	NSX-T	Manager	Cluster,	while	the	LCP	includes	the	user	space	module	on	all	of	the	NSX-T	transport	nodes.	This	module	interacts	with	the	CCP	to	exchange	configuration	and	state	information.	From	a	DFW	policy	configuration	perspective,	NSX-T	Control	plane	will	receive	policy	rules	pushed	by	the	NSX-T	Management	plane.	If	the	policy	contains	objects	including	segments	or	Groups,	it	converts	them	into	IP	addresses	using	an	object-to-IP	mapping	table.	This	table	is	maintained	by	the	control	plane	and	updated	using	an	IP	discovery	mechanism.	Once	the
policy	is	converted	into	a	set	of	rules	based	on	IP	addresses,	the	CCP	pushes	the	rules	to	the	LCP	on	all	the	NSX-T	transport	nodes.	The	CCP	utilizes	a	hierarchy	system	to	distribute	the	load	of	CCP-to-LCP	communication.	The	responsibility	for	transport	node	notification	is	distributed	across	the	managers	in	the	manager	clusters	based	on	an	internal	hashing	mechanism.	For	example,	for	30	transport	nodes	with	three	managers,	each	manager	will	be	responsible	for	roughly	ten	transport	nodes.	5.2.3					Data	Plane	The	NSX-T	transport	nodes	comprise	the
distributed	data	plane	with	DFW	enforcement	done	at	the	hypervisor	kernel	level.	Each	of	the	transport	nodes,	at	any	given	time,	connects	to	only	one	of	the	CCP	managers,	based	on	mastership	for	that	node.	On	each	of	the	transport	nodes,	once	the	local	control	plane	(LCP)	has	received	policy	configuration	from	CCP,	it	pushes	the	firewall	policy	and	rules	to	the	data	plane	filters	(in	kernel)	for	each	of	the	virtual	NICs.	With	the	“Applied	To”	field	in	the	rule	or	section	which	defines	scope	of	enforcement,	the	LCP	makes	sure	only	relevant	DFW	rules	are
programmed	on	relevant	virtual	NICs	instead	of	every	rule	everywhere,	which	would	be	a	suboptimal	use	of	hypervisor	resources.	Additional	details	on	data	plane	components	for	both	ESXi	and	KVM	hosts	explained	in	following	sections.	5.3						NSX-T	Data	Plane	Implementation	-	ESXi	vs.	KVM	Hosts	NSX-T	provides	network	virtualization	and	security	services	in	a	heterogeneous	hypervisor	environment,	managing	ESXi	and	KVM	hosts	as	part	of	the	same	NSX-T	cluster.	The	DFW	is	functionally	identical	in	both	environments;	however,	there	are	architectural
and	implementation	differences	depending	on	the	hypervisor	specifics.	Management	and	control	plane	components	are	identical	for	both	ESXi	and	KVM	hosts.	For	the	data	plane,	they	use	a	different	implementation	for	packet	handling.	NSX-T	uses	either	the	VDS	in	ESXi	7.0	and	later	or	the	N-VDS	(which	is	derived	from	the	VDS)	on	earlier	ESXi	hosts,	along	with	the	VMware	Internetworking	Service	Insertion	Platform	(vSIP)	kernel	module	for	firewalling.	(For	details	on	the	differences	between	the	N-VDS	and	the	VDS,	see	NSX-T	Logical	Switching.		For	KVM,
the	N-VDS	leverages	Open	vSwitch	(OVS)	and	its	utilities.	The	following	sections	highlight	data	plane	implementation	details	and	differences	between	these	two	options.	5.3.1					ESXi	Hosts-	Data	Plane	Components	NSX-T	uses	VDS	or	N-VDS	on	ESXi	hosts	for	connecting	virtual	workloads,	managing	it	with	the	NSX-T	Manager	application.	The	NSX-T	DFW	kernel	space	implementation	for	ESXi	is	same	as	the	implementation	of	NSX	for	vSphere	–	it	uses	the	VMware	Internetworking	Service	Insertion	Platform	(vSIP)	kernel	module	and	kernel	IO	chains	filters.
NSX-T	does	not	require	vCenter	to	be	present.	Figure	5‑3:	NSX-T	Management	Plane	Components	on	KVM	provides	details	on	the	data	plane	components	for	the	ESX	host.	Figure	5‑3:	NSX-T	Management	Plane	Components	on	KVM	NSX-T	uses	OVS	and	its	utilities	on	KVM	to	provide	DFW	functionality,	thus	the	LCP	agent	implementation	differs	from	an	ESXi	host.	For	KVM,	there	is	an	additional	component	called	the	NSX	agent	in	addition	to	LCP,	with	both	running	as	user	space	agents.	When	LCP	receives	DFW	policy	from	the	CCP,	it	sends	it	to	the	NSX-
agent.	The	NSX-agent	will	process	and	convert	policy	messages	received	to	a	format	appropriate	for	the	OVS	data	path.	Then,	the	NSX	agent	programs	the	policy	rules	onto	the	OVS	data	path	using	OpenFlow	messages.	For	stateful	DFW	rules,	NSX-T	uses	the	Linux	conntrack	utilities	to	keep	track	of	the	state	of	permitted	flow	connections	allowed	by	a	stateful	firewall	rule.	For	DFW	policy	rule	logging,	NSX-T	uses	the	ovs-fwd	module.	The	MPA	interacts	with	NSX-T	Manager	to	export	status,	rules,	and	flow	statistics.	The	MPA	module	gets	the	rules	and	flows
statistics	from	data	path	tables	using	the	stats	exporter	module.	Figure	5‑4:	NSX-T	DFW	Data	Plane	Components	on	KVM	5.3.2					NSX-T	DFW	Policy	Lookup	and	Packet	Flow	In	the	data	path,	the	DFW	maintains	two	tables:	a	rule	table	and	a	connection	tracker	table.	The	LCP	populates	the	rule	table	with	the	configured	policy	rules,	while	the	connection	tracker	table	is	updated	dynamically	to	cache	flows	permitted	by	rule	table.	NSX-T	DFW	can	allow	for	a	policy	to	be	stateful	or	stateless	with	section-level	granularity	in	the	DFW	rule	table.	The	connection
tracker	table	is	populated	only	for	stateful	policy	rules;	it	contains	no	information	on	stateless	policies.	This	applies	to	both	ESXi	and	KVM	environments.	NSX-T	DFW	rules	are	enforced	as	follows:	●							Rules	are	processed	in	top-to-bottom	order.	●							Each	packet	is	checked	against	the	top	rule	in	the	rule	table	before	moving	down	the	subsequent	rules	in	the	table.	●							The	first	rule	in	the	table	that	matches	the	traffic	parameters	is	enforced.	The	search	is	then	terminated,	so	no	subsequent	rules	will	be	examined	or	enforced.	Because	of	this	behavior,	it	is
always	recommended	to	put	the	most	granular	policies	at	the	top	of	the	rule	table.	This	will	ensure	more	specific	policies	are	enforced	first.	The	DFW	default	policy	rule,	located	at	the	bottom	of	the	rule	table,	is	a	catchall	rule;	packets	not	matching	any	other	rule	will	be	enforced	by	the	default	rule	-	which	is	set	to	“allow”	by	default.	This	ensures	that	VM-to-VM	communication	is	not	broken	during	staging	or	migration	phases.	It	is	a	best	practice	to	then	change	this	default	rule	to	a	“drop”	action	and	enforce	access	control	through	an	explicit	allow	model	(i.e.,
only	traffic	defined	in	the	firewall	policy	is	allowed	onto	the	network).	Figure	5‑5:	NSX-T	DFW	Policy	Lookup	diagrams	the	policy	rule	lookup	and	packet	flow.	Figure	5‑5:	NSX-T	DFW	Policy	Lookup	In	the	example	shown	above,	WEB	VM	initiates	a	session	to	APP	VM	by	sending	TCP	SYN	packet.	The	TCP	SYN	packets	hit	the	DFW	on	vNIC	and	does	a	Flow	Table	lookup	first,	to	see	if	any	state	matches	the	existing	Flow.	Given	it's	the	first	packet	of	the	new	session,	lookup	results	in	“Flow	state	not	found”.	Since	the	Flow	Table	missed,	the	DFW	does	a	Rule	Table
lookup	in	top-down	order	for	5-Tuple	match.	Flow	Matches	FW	rule	2,	which	is	Allow	so	the	packet	is	sent	out	to	the	destination.	In	addition,	the	Flow	table	is	updated	with	New	Flow	State	for	permitted	flow	as	"Flow	2”.				Subsequent	packets	in	this	TCP	session	checked	against	this	flow	in	the	flow	table	for	the	state	match.	Once	the	session	terminates,	the	flow	information	is	removed	from	the	flow	table.	5.4						NSX-T	Security	Policy	-	Plan,	Design	and	Implement	Planning,	designing,	and	implementing	NSX-T	security	policy	is	a	three-step	process:	Policy
Methodology	–	Decide	on	the	policy	approach	-	application-centric,	infrastructure-centric,	or	network-centric	Policy	Rule	Model	–	Select	grouping	and	management	strategy	for	policy	rules	by	the	NSX-T	DFW	policy	categories	and	sections.	Policy	Consumption	–	Implement	the	policy	rules	using	the	abstraction	through	grouping	constructs	and	options	provided	by	NSX-T.	5.4.1					Security	Policy	Methodology	This	section	details	the	considerations	behind	policy	creation	strategies	to	help	determine	which	capabilities	of	the	NSX-T	platform	should	be	utilized	as
well	as	how	various	grouping	methodologies	and	policy	strategies	can	be	adopted	for	a	specific	design.	The	three	general	methodologies	reviewed	in	Figure	5‑6:	Micro-segmentation	Methodologies	can	be	utilized	for	grouping	application	workloads	and	building	security	rule	sets	within	the	NSX-T	DFW.	This	section	will	look	at	each	methodology	and	highlight	appropriate	usage.	Figure	5‑6:	Micro-segmentation	Methodologies	5.4.1.1							Ethernet	The	Ethernet	Section	of	the	policy	is	a	Layer	2	firewalling	section.	All	rules	in	this	section	must	use	MAC	Addresses
for	their	source	or	destination	objects.		Any	rule	defined	with	any	other	object	type	will	be	ignored.	5.4.1.2							Application	In	an	application-centric	approach,	grouping	is	based	on	the	application	type	(e.g.,	VMs	tagged	as	“Web-Servers”),	application	environment	(e.g.,	all	resources	tagged	as	“Production-Zone”)	and	application	security	posture.	An	advantage	of	this	approach	is	the	security	posture	of	the	application	is	not	tied	to	network	constructs	or	infrastructure.	Security	policies	can	move	with	the	application	irrespective	of	network	or	infrastructure
boundaries,	allowing	security	teams	to	focus	on	the	policy	rather	than	the	architecture.	Policies	can	be	templated	and	reused	across	instances	of	the	same	types	of	applications	and	workloads	while	following	the	application	lifecycle;	they	will	be	applied	when	the	application	is	deployed	and	is	destroyed	when	the	application	is	decommissioned.	An	application-based	policy	approach	will	significantly	aid	in	moving	towards	a	self-service	IT	model.	In	an	environment	where	there	is	strong	adherence	to	a	strict	naming	convention,	the	VM	substring	grouping	option
allows	for	simple	policy	definition.	An	application-centric	model	does	not	provide	significant	benefits	in	an	environment	that	is	static,	lacks	mobility,	and	has	infrastructure	functions	that	are	properly	demarcated.	5.4.1.3							Infrastructure	Infrastructure-centric	grouping	is	based	on	infrastructure	components	such	as	segments	or	segment	ports,	identifying	where	application	VMs	are	connected.	Security	teams	must	work	closely	with	the	network	administrators	to	understand	logical	and	physical	boundaries.	If	there	are	no	physical	or	logical	boundaries	in	the
environment,	then	an	infrastructure-centric	approach	is	not	suitable.	5.4.1.4							Network	Network-centric	is	the	traditional	approach	of	grouping	based	on	L2	or	L3	elements.	Grouping	can	be	done	based	on	MAC	addresses,	IP	addresses,	or	a	combination	of	both.	NSX-T	supports	this	approach	of	grouping	objects.	A	security	team	needs	to	aware	of	networking	infrastructure	to	deploy	network-based	policies.	There	is	a	high	probability	of	security	rule	sprawl	as	grouping	based	on	dynamic	attributes	is	not	used.	This	method	of	grouping	works	well	for	migrating
existing	rules	from	an	existing	firewall.	A	network-centric	approach	is	not	recommended	in	dynamic	environments	where	there	is	a	rapid	rate	of	infrastructure	change	or	VM	addition/deletion.	5.4.2					Security	Rule	Model	Policy	rule	models	in	a	data	center	are	essential	to	achieve	optimal	micro-segmentation	strategies.	The	first	criteria	in	developing	a	policy	model	is	to	align	with	the	natural	boundaries	in	the	data	center,	such	as	tiers	of	application,	SLAs,	isolation	requirements,	and	zonal	access	restrictions.	Associating	a	top-level	zone	or	boundary	to	a	policy
helps	apply	consistent,	yet	flexible	control.	Global	changes	for	a	zone	can	be	applied	via	single	policy;	however,	within	the	zone	there	could	be	a	secondary	policy	with	sub-grouping	mapping	to	a	specific	sub-zone.	An	example	production	zone	might	itself	be	carved	into	sub-zones	like	PCI	or	HIPAA.	There	are	also	zones	for	each	department	as	well	as	shared	services.	Zoning	creates	relationships	between	various	groups,	providing	basic	segmentation	and	policy	strategies.	A	second	criterion	in	developing	policy	models	is	identifying	reactions	to	security	events
and	workflows.	If	a	vulnerability	is	discovered,	what	are	the	mitigation	strategies?	Where	is	the	source	of	the	exposure	–	internal	or	external?	Is	the	exposure	limited	to	a	specific	application	or	operating	system	version?	When	east-west	security	is	first	implemented	in	a	brownfield	environment,	there	are	two	common	approaches,	depending	on	corporate	culture:	either	an	incremental	zonal	approach	where	one	application	is	secured	before	moving	to	the	next,	or	a	top-down	iterative	approach	where	first	prod	and	non-prod	are	divided	then	each	of	those	areas
are	further	subdivided.		Regardless	of	the	chosen	approach,	there	will	likely	be	a	variety	of	security	postures	taken	within	each	zone.		A	lab	zone,	for	example	may	merely	be	ring-fenced	with	a	policy	that	allows	any	traffic	type	from	lab	device	to	lab	device	and	only	allows	basic	common	services	such	as	LDAP,	NTP,	and	DNS	to	penetrate	the	perimeter	in.		On	the	other	end	of	the	spectrum,	any	zone	containing	regulated	or	sensitive	data	(such	as	customer	info)	will	often	be	tightly	defined	traffic	between	entities,	many	types	being	further	inspected	by	partner
L7	firewall	offerings	using	Service	Insertion.	The	answers	to	these	questions	help	shape	a	policy	rule	model.	Policy	models	should	be	flexible	enough	to	address	ever-changing	deployment	scenarios,	rather	than	simply	be	part	of	the	initial	setup.	Concepts	such	as	intelligent	grouping,	tags	and	hierarchy	provide	flexible	yet	agile	response	capability	for	steady	state	protection	as	well	as	during	instantaneous	threat	response.	The	model	shown	in	Figure	5‑7:	Security	Rule	Model	represents	an	overview	of	the	different	classifications	of	security	rules	that	can	be
placed	into	the	NSX-T	DFW	rule	table.	Each	of	the	classification	shown	represents	a	category	on	NSX-T	firewall	table	layout.	The	Firewall	table	category	aligns	with	the	best	practice	around	organizing	rules	to	help	admin	with	grouping	Policy	based	on	the	category.	Each	firewall	category	can	have	one	or	more	policy	within	it	to	organize	firewall	rules	under	that	category.	Figure	5‑7:	Security	Rule	Model	5.4.3					Security	Policy	-	Consumption	Model	NSX-T	Security	policy	is	consumed	by	the	firewall	rule	table,	which	is	using	NSX-T	Manager	GUI	or	REST	API
framework.	When	defining	security	policy	rules	for	the	firewall	table,	it	is	recommended	to	follow	these	high-level	steps:	●							VM	Inventory	Collection	–	Identify	and	organize	a	list	of	all	hosted	virtualized	workloads	on	NSX-T	transport	nodes.	This	is	dynamically	collected	and	saved	by	NSX-T	Manager	as	the	nodes	–	ESXi	or	KVM	–	are	added	as	NSX-T	transport	nodes.	●							Tag	Workload	–	Use	VM	inventory	collection	to	organize	VMs	with	one	or	more	tags.	Each	designation	consists	of	scope	and	tag	association	of	the	workload	to	an	application,	environment,
or	tenant.	For	example,	a	VM	tag	could	be	“Scope	=	Prod,	Tag	=	web”	or	“Scope=tenant-1,	Tag	=	app-1”.	Often,	these	categories	will	dive	several	layers	deep	including	BU,	project,	environment,	and	regulatory	flags.		When	following	the	iterative	approach	of	segmentation,	categories	and	tags	can	be	added	to	entities	with	existing	tags.		In	the	application	centric	approach,	new	categories	can	be	added	with	each	application.	●							Group	Workloads	–	Use	the	NSX-T	logical	grouping	construct	with	dynamic	or	static	membership	criteria	based	on	VM	name,	tags,
segment,	segment	port,	IP’s,	or	other	attributes.	NSX-T	allows	for	thousands	of	groups	based	on	tags,	although	rarely	are	more	than	a	dozen	or	so	needed.	●							Define	Security	Policy	–	Using	the	firewall	rule	table,	define	the	security	policy.	Have	categories	and	policies	to	separate	and	identify	emergency,	infrastructure,	environment,	and	application-specific	policy	rules	based	on	the	rule	model.	The	methodology	and	rule	model	mentioned	earlier	would	influence	how	to	tag	and	group	the	workloads	as	well	as	affect	policy	definition.	The	following	sections	offer
more	details	on	grouping	and	firewall	rule	table	construction	with	an	example	of	grouping	objects	and	defining	NSX-T	DFW	policy.	5.4.3.1							Group	Creation	Strategies	The	most	basic	grouping	strategy	is	creation	of	a	group	around	every	application	which	is	hosted	in	the	NSX-T	environment.	Each	3-tier,	2-tier,	or	single-tier	applications	should	have	its	own	security	group	to	enable	faster	operationalization	of	micro-segmentation.	When	combined	with	a	basic	rule	restricting	inter-application	communication	to	only	essential	shared	services	(e.g.,	DNS,	AD,
DHCP	server)	this	enforces	granular	security	inside	the	perimeter.	Once	this	basic	micro-segmentation	is	in	place,	the	writing	of	per-application	rules	can	begin.	Groups	NSX-T	provides	collection	of	referenceable	objects	represented	in	a	construct	called	Groups.	The	selection	of	a	specific	policy	methodology	approach	–	application,	infrastructure,	or	network	–	will	help	dictate	how	grouping	construct	is	used.	Groups	allow	abstraction	of	workload	grouping	from	the	underlying	infrastructure	topology.	This	allows	a	security	policy	to	be	written	for	either	a
workload	or	zone	(e.g.,	PCI	zone,	DMZ,	or	production	environment).	A	Group	is	a	logical	construct	that	allows	grouping	into	a	common	container	of	static	(e.g.,	IPSet/NSX	objects)	and	dynamic	(e.g.,	VM	names/VM	tags)	elements.	This	is	a	generic	construct	which	can	be	leveraged	across	a	variety	of	NSX-T	features	where	applicable.	Static	criteria	provide	capability	to	manually	include	particular	objects	into	the	Group.	For	dynamic	inclusion	criteria,	Boolean	logic	can	be	used	to	create	groups	between	various	criteria.	A	Group	creates	a	logical	grouping	of	VMs
based	on	static	and	dynamic	criteria.	Table	5‑1:	NSX-T	Objects	used	for	Groups	shows	one	type	of	grouping	criteria	based	on	NSX-T	Objects.	NSX-T	Object	Description	IP	Address	Grouping	of	IP	addresses	and	subnets.	Segment	All	VMs/vNICs	connected	to	this	segment/logical	switch	segment	will	be	selected.	Group	Nested	(Sub-group)	of	collection	of	referenceable	objects	-	all	VMs/vNICs	defined	within	the	Group	will	be	selected	Segment	Port	This	particular	vNIC	instance	will	be	selected.	MAC	Address	Selected	MAC	sets	container	will	be	used.	MAC	sets
contain	a	list	of	individual	MAC	addresses.	AD	Groups	Grouping	based	on	Active	Directory	groups	for	Identity	Firewall	(VDI/RDSH)	use	case.	Table	5‑1:	NSX-T	Objects	used	for	Groups	Table	5‑2:	VM	Properties	used	for	Groups	list	the	selection	criteria	based	on	VM	properties.	VM	Property	Description	VM	Name	All	VMs	that	contain/equal/starts/not-equals	with	the	string	as	part	of	their	name.	Tags	All	VMs	that	are	applied	with	specified	NSX-T	security	tags	OS	Name	All	VM	with	specific	operating	System	type	and	version	Computer	name	All	VMs	that
contain/equal/starts/not-equals	with	the	string	as	part	of	their	hostname.	Table	5‑2:	VM	Properties	used	for	Groups	The	use	of	Groups	gives	more	flexibility	as	an	environment	changes	over	time.	This	approach	has	three	major	advantages:	●							Rules	stay	more	constant	for	a	given	policy	model,	even	as	the	data	center	environment	changes.	The	addition	or	deletion	of	workloads	will	affect	group	membership	alone,	not	the	rules.	●							Publishing	a	change	of	group	membership	to	the	underlying	hosts	is	more	efficient	than	publishing	a	rule	change.	It	is	faster	to
send	down	to	all	the	affected	hosts	and	cheaper	in	terms	of	memory	and	CPU	utilization.	●							As	NSX-T	adds	more	grouping	object	criteria,	the	group	criteria	can	be	edited	to	better	reflect	the	data	center	environment.	Using	Nested	Groups	Groups	can	be	nested.	A	Group	may	contain	multiple	groups	or	a	combination	of	groups	and	other	grouping	objects.	A	security	rule	applied	to	the	parent	Group	is	automatically	applied	to	the	child	Groups.	Nesting	should	be	limited	to	3	levels,	although	more	are	supported.	This	is	to	ease	troubleshooting,	minimize
unintentional	policy	results,	and	to	optimize	the	computational	burden	of	publishing	policy.	Nothing	prolongs	downtime	like	trying	to	follow	the	logic	of	a	grouping	nested	5	levels	deep.	In	the	example	shown	in	Figure	5‑8:	Group	and	Nested	Group	Example,	three	Groups	have	been	defined	with	different	inclusion	criteria	to	demonstrate	the	flexibility	and	the	power	of	grouping	construct.	●							Using	dynamic	inclusion	criteria,	all	VMs	with	name	starting	by	“WEB”	are	included	in	Group	named	“SG-WEB”.	●							Using	dynamic	inclusion	criteria,	all	VMs
containing	the	name	“APP”	and	having	a	tag	“Scope=PCI”	are	included	in	Group	named	“SG-PCI-APP”.	●							Using	static	inclusion	criteria,	all	VMs	that	are	connected	to	a	segment	“SEG-DB”	are	included	in	Group	named	“SG-DB”.	Nesting	of	Group	is	also	possible;	all	three	of	the	Groups	in	the	list	above	could	be	children	of	a	parent	Group	named	“SG-APP-1-AllTier”.	This	organization	is	also	shown	in	Figure	5‑8:	Group	and	Nested	Group	Example.	Figure	5‑8:	Group	and	Nested	Group	Example	Efficient	Grouping	Considerations	Calculation	of	groups	adds	a
processing	load	to	the	NSX-T	management	and	control	planes.	Different	grouping	mechanisms	add	different	types	of	loads.	Static	groupings	are	more	efficient	than	dynamic	groupings	in	terms	of	calculation.	At	scale,	grouping	considerations	should	consider	the	frequency	of	group	changes	for	associated	VMs.	A	large	number	of	group	changes	applied	frequently	means	the	grouping	criteria	is	suboptimal.	5.4.3.2							Define	Policy	using	DFW	Rule	Table	The	NSX-T	DFW	rule	table	starts	with	a	default	rule	to	allow	any	traffic.	An	administrator	can	add	multiple
policies	on	top	of	default	rule	under	different	categories	based	on	the	specific	policy	model.	NSX-T	distributed	firewall	table	layout	consists	of	Categories	like	Ethernet,	Emergency,	Infrastructure,	Environment,	and	Application	to	help	users	to	organize	security	policies.	Each	category	can	have	one	or	more	policy/section	with	one	or	more	firewall	rules.	Please	refer	to	Security	Rule	Model	section	above	to	understand	the	best	practices	around	organizing	the	policies.	In	the	data	path,	the	packet	lookup	will	be	performed	from	top	to	bottom	order,	starting	with
policies	from	category	Ethernet,	Emergency,	Infrastructure,	Environment	and	Application.	Any	packet	not	matching	an	explicit	rule	will	be	enforced	by	the	last	rule	in	the	table	(i.e.,	default	rule).	This	final	rule	is	set	to	the	“allow”	action	by	default,	but	it	can	be	changed	to	“block”	if	desired.	The	NSX-T	DFW	enables	policy	to	be	stateful	or	stateless	with	policy-level	granularity.	By	default,	NSX-T	DFW	is	a	stateful	firewall;	this	is	a	requirement	for	most	deployments.	In	some	scenarios	where	an	application	has	less	network	activity,	the	stateless	section	may	be
appropriate	to	avoid	connection	reset	due	to	inactive	timeout	of	the	DFW	stateful	connection	table.		NSX-T	Firewall	policy	can	also	be	locked	by	a	user	to	avoid	losing	any	update	to	policy	with	multiple	people	editing	same	policy	at	the	same	time.	Name	ID	Source	Destination	Service	Profiles	Applied	To	Action	Advanced	Setting	Stats	Table	5‑3:	Policy	Rule	Fields	A	rule	within	a	policy	is	composed	of	field	shown	in	Table	5‑3:	Policy	Rule	Fields	and	its	meaning	is	described	below	Rule	Name:	User	field;	supports	up	to	30	characters.	ID:	Unique	rule	ID	auto
generated	by	System.	The	rule	id	helps	in	monitoring	and	troubleshooting.		Firewall	Log	carries	this	Rule	ID	when	rule	logging	is	enabled.	Source	and	Destination:	Source	and	destination	fields	of	the	packet.	This	will	be	a	GROUP	which	could	be	static	or	dynamic	groups	as	mentioned	under	Group	section.	Service:	Predefined	services,	predefined	services	groups,	or	raw	protocols	can	be	selected.	When	selecting	raw	protocols	like	TCP	or	UDP,	it	is	possible	to	define	individual	port	numbers	or	a	range.	There	are	four	options	for	the	services	field:	●							Pre-
defined	Service	–	A	pre-defined	Service	from	the	list	of	available	objects.	●							Add	Custom	Services	–	Define	custom	services	by	clicking	on	the	“Create	New	Service”	option.	Custom	services	can	be	created	based	on	L4	Port	Set,	application	level	gateways	(ALGs),	IP	protocols,	and	other	criteria.	This	is	done	using	the	“service	type”	option	in	the	configuration	menu.	When	selecting	an	L4	port	set	with	TCP	or	UDP,	it	is	possible	to	define	individual	destination	ports	or	a	range	of	destination	ports.	When	selecting	ALG,	select	supported	protocols	for	ALG	from	the
list.	ALGs	are	only	supported	in	stateful	mode;	if	the	section	is	marked	as	stateless,	the	ALGs	will	not	be	implemented.	Additionally,	some	ALGs	may	be	supported	only	on	ESXi	hosts,	not	KVM.	Please	review	release-specific	documentation	for	supported	ALGs	and	hosts.	●							Custom	Services	Group	–	Define	a	custom	Services	group,	selecting	from	single	or	multiple	services.	Workflow	is	similar	to	adding	Custom	services,	except	you	would	be	adding	multiple	service	entries.		Profiles:	This	is	used	to	select	&	define	Layer	7	Application	ID	&	FQDN	profile.	This	is
used	for	Layer	7	based	security	rules.	Applied	To:	Define	the	scope	of	rule	publishing.	The	policy	rule	could	be	published	all	workloads	(default	value)	or	restricted	to	a	specific	GROUP.			When	GROUP	is	used	in	Applied-To	it	needs	to	be	based	on	NON-IP	members	like	VM	object,	Segments	etc.	Not	using	the	Applied	To	field	can	result	in	very	large	firewall	tables	being	loaded	on	vNICs,	which	will	negatively	affect	performance.		Action:	Define	enforcement	method	for	this	policy	rule;	available	options	are	listed	in	Table	5‑4:	Firewall	Rule	Table	–	“Action”	Values
Action	Description	Drop	Block	silently	the	traffic.	Allow	Allow	the	traffic.	Reject	Reject	action	will	send	back	to	initiator:	•	RST	packets	for	TCP	connections.	•	ICMP	unreachable	with	network	administratively	prohibited	code	for	UDP,	ICMP	and	other	IP	connections.	Table	5‑4:	Firewall	Rule	Table	–	“Action”	Values	Advanced	Settings:		Following	settings	are	under	advanced	settings	options:	Logging:	Enable	or	disable	packet	logging.	When	enabled,	each	DFW	enabled	host	will	send	DFW	packet	logs	in	a	syslog	file	called	“dfwpktlog.log”	to	the	configured	syslog
server.	This	information	from	the	default	rule	will	provide	insight	to	traffic	not	currently	being	caught	by	existing	policy.	Best	practice	for	deploying	east-west	traffic	in	a	brownfield	environment	is	to	define	policy	with	a	default	allow	rule	with	logging.		This	allows	for	the	verification	of	traffic	not	currently	caught	by	policy.	Direction:	This	field	matches	the	direction	of	the	packet,	default	both	In-Out.	It	can	be	set	to	match	packet	exiting	the	VM,	entering	the	VM,	or	both	directions.	IP	Protocol:	By	default,	both	IPv4	&	IPv6	protocols.	Option	to	choose	IPv4	or
IPv6.	Log	Label:	You	can	Label	the	rule;	this	will	be	sent	as	part	of	DFW	packet	log	when	traffic	hits	this	rule.	Notes:	This	field	can	be	used	for	any	free-flowing	string	and	is	useful	to	store	comments.	Best	practice	is	to	use	this	field	for	change	control	by	pointing	to	a	ticket	ID.	Stats:	Provides	packets/bytes/sessions	statistics	along	with	popularity	index	associated	with	that	rule	entry.	The	Also	provides	Popularity	Index	for	the	given	rule.	Stats	per	rule	are	Polled	Aggregated	every	15	minutes	from	all	the	transport	nodes.	Examples	of	Policy	Rules	for	3-Tier
Application	Figure	5‑9:	3-Tier	Application	Network	Topology	shows	a	standard	3-Tier	application	topology	used	to	define	NSX-T	DFW	policy.	Three	web	servers	are	connected	to	“SEG	Web”,	two	applications	servers	are	connected	to	“SEG	App”,	and	2	DB	servers	connected	to	“SEG	DB”.	A	distributed	Gateway	is	used	to	interconnect	the	three	tiers	by	providing	inter-tier	routing.	NSX-T	DFW	has	been	enabled,	so	each	VM	has	a	dedicated	instance	of	DFW	attached	to	its	vNIC/segment	port.	Figure	5‑9:	3-Tier	Application	Network	Topology	In	order	to	define
micro-segmentation	policy	for	this	application	use	the	category	Application	on	DFW	rule	table	and	add	a	new	policy	session	and	rules	within	it	for	each	application.	The	following	use	cases	employ	present	policy	rules	based	on	the	different	methodologies	introduced	earlier.	Example	1:	Static	IP	addresses/subnets	Group	in	security	policy	rule.	This	example	shows	use	of	the	network	methodology	to	define	policy	rule.	Groups	in	this	example	are	identified	in	Table	5‑5:	Firewall	Rule	Table	-	Example	1	–	Group	Definition	while	the	firewall	policy	configuration	is
shown	in	Table	5‑6:	Firewall	Rule	Table	-	Example	1-	Policy.	Group	name	Group	definition	Group-WEB-IP	IP	Members:	172.16.10.0/24	Group-APP-IP	IP	Members:	172.16.20.0/24	Group-DB-IP	IP	Members:	172.16.30.0/24	Table	5‑5:	Firewall	Rule	Table	-	Example	1	–	Group	Definition	Name	Source	Destination	Service	Action	Applied	To	Any	to	Web	Any	Group-WEB-IP	https	Allow	All	Web	to	App	Group-WEB-IP	Group-APP-IP	Allow	All	App	to	DB	Group-APP-IP	Group-DB-IP	SQL	Allow	All	Block-Other	Any	Any	Any	Drop	All	Table	5‑6:	Firewall	Rule	Table	-	Example	1-
Policy	The	DFW	engine	is	able	to	enforce	network	traffic	access	control	based	on	the	provided	information.	To	use	this	type	of	construct,	exact	IP	information	is	required	for	the	policy	rule.	This	construct	is	quite	static	and	does	not	fully	leverage	dynamic	capabilities	with	modern	cloud	systems.	Example	2:	Using	Segment	object	Group	in	Security	Policy	rule.	This	example	uses	the	infrastructure	methodology	to	define	policy	rule.	Groups	in	this	example	are	identified	in	Table	5‑7:	Firewall	Rule	Table	-	Example	2	–	Group	Definition	while	the	firewall	policy
configuration	is	shown	in	Table	5‑8:	Firewall	Rule	Table	-	Example	2	–	Policy.	Group	name	Group	definition	Group-SEG-WEB	Static	inclusion:	SEG-WEB	Group-SEG-APP	Static	inclusion:	SEG-APP	Group-SEG-DB	Static	inclusion:	SEG-DB	Table	5‑7:	Firewall	Rule	Table	-	Example	2	–	Group	Definition	Name	Source	Destination	Service	Action	Applied	To	Any	to	Web	Any	Group-SEG-WEB	https	Allow	Group-SEG-WEB	Web	to	App	Group-SEG-WEB	Group-SEG-APP	Allow	Group-SEG-WEB	Group-SEG-APP	App	to	DB	Group-SEG-APP	Group-SEG-DB	SQL	Allow	Group-
SEG-APP	Group-SEG-DB	Block-Other	Any	Any	Any	Drop	Group-SEG-WEB	Group-SEG-APP	Group-SEG-DB	Table	5‑8:	Firewall	Rule	Table	-	Example	2	–	Policy	Reading	this	policy	rule	table	would	be	easier	for	all	teams	in	the	organization,	ranging	from	security	auditors	to	architects	to	operations.	Any	new	VM	connected	on	any	segment	will	be	automatically	secured	with	the	corresponding	security	posture.	For	instance,	a	newly	installed	web	server	will	be	seamlessly	protected	by	the	first	policy	rule	with	no	human	intervention,	while	VM	disconnected	from	a
segment	will	no	longer	have	a	security	policy	applied	to	it.	This	type	of	construct	fully	leverages	the	dynamic	nature	of	NSX-T.	It	will	monitor	VM	connectivity	at	any	given	point	in	time,	and	if	a	VM	is	no	longer	connected	to	a	particular	segment,	any	associated	security	policies	are	removed.	This	policy	rule	also	uses	the	“Applied	To”	option	to	apply	the	policy	to	only	relevant	objects	rather	than	populating	the	rule	everywhere.	In	this	example,	the	first	rule	is	applied	to	the	vNIC	associated	with	“SEG-Web”.	Use	of	“Applied	To”	is	recommended	to	define	the
enforcement	point	for	the	given	rule	for	better	resource	usage.	Security	policy	and	IP	Discovery	Both	NSX-T	DFW	and	Gateway	Firewall	(GFW)	has	a	dependency	on	VM-to-IP	discovery	which	is	used	to	translate	objects	to	IP	before	rules	are	pushed	to	data	path.	This	is	mainly	required	when	the	policy	is	defined	using	grouped	objects.	This	VM-to-IP	table	is	maintained	by	NSX-T	Control	plane	and	populated	by	the	IP	discovery	mechanism.	IP	discovery	used	as	a	central	mechanism	to	ascertain	the	IP	address	of	a	VM.	By	default,	this	is	done	using	DHCP	and	ARP
snooping,	with	VMware	Tools	available	as	another	mechanism	with	ESXi	hosts.	These	discovered	VM-to-IP	mappings	can	be	overridden	by	manual	input	if	needed,	and	multiple	IP	addresses	are	possible	on	a	single	vNIC.	The	IP	and	MAC	addresses	learned	are	added	to	the	VM-to-IP	table.	This	table	is	used	internally	by	NSX-T	for	SpoofGuard,	ARP	suppression,	and	firewall	object-to-IP	translation.	5.5						Intrusion	Detection	Much	like	distributed	firewalling	changed	the	game	on	firewalling	by	providing	a	distributed,	ubiquitous	enforcement	plane,	NSX
distributed	IPS/IPS	changes	the	game	on	IPS	by	providing	a	distributed,	ubiquitous	enforcement	plane.		However,	there	are	additional	benefits	that	the	NSX	distributed	IPS	model	brings	beyond	ubiquity	(which	in	itself	is	a	game	changer).		NSX	IPS	is	IPS	distributed	across	all	the	hosts.		Much	like	with	DFW,	the	distributed	nature	allows	the	IPS	capacity	to	grow	linearly	with	compute	capacity.		Beyond	that,	however,	there	is	an	added	benefit	to	distributing	IPS.		This	is	the	added	context.	Legacy	network	Intrusion	Detection	and	Prevention	systems	are
deployed	centrally	in	the	network	and	rely	either	on	traffic	to	be	hairpinned	through	them	or	a	copy	of	the	traffic	to	be	sent	to	them	via	techniques	like	SPAN	or	TAPs.	These	sensors	typically	match	all	traffic	against	all	or	a	broad	set	of	signatures	and	have	very	little	context	about	the	assets	they	are	protecting.	Applying	all	signatures	to	all	traffic	is	very	inefficient,	as	IDS/IPS	unlike	firewalling	needs	to	look	at	the	packet	payload,	not	just	the	network	headers.	Each	signature	that	needs	to	be	matched	against	the	traffic	adds	inspection	overhead	and	potential
latency	introduced.	Also,	because	legacy	network	IDS/IPS	appliances	just	see	packets	without	having	context	about	the	protected	workloads,	it’s	very	difficult	for	security	teams	to	determine	the	appropriate	priority	for	each	incident.	Obviously,	a	successful	intrusion	against	a	vulnerable	database	server	in	production	which	holds	mission-critical	data	needs	more	attention	than	someone	in	the	IT	staff	triggering	an	IDS	event	by	running	a	vulnerability	scan.	Because	the	NSX	distributed	IDS/IPS	is	applied	to	the	vNIC	of	every	workload,	traffic	does	not	need	to
hairpinned	to	a	centralized	appliance,	and	we	can	be	very	selective	as	to	what	signatures	are	applied.	Signatures	related	to	a	windows	vulnerability	don’t	need	to	be	applied	to	Linux	workloads,	or	servers	running	Apache	don’t	need	signatures	that	detect	an	exploit	of	a	database	service.	Through	the	Guest	Introspection	Framework,	and	in-guest	drivers,	NSX	has	access	to	context	about	each	guest,	including	the	operating	system	version,	users	logged	in	or	any	running	process.	This	context	can	be	leveraged	to	selectively	apply	only	the	relevant	signatures,	not
only	reducing	the	processing	impact,	but	more	importantly	reducing	the	noise	and	quantity	of	false	positives	compared	to	what	would	be	seen	if	all	signatures	are	applied	to	all	traffic	with	a	traditional	appliance.		For	a	detailed	description	of	IDS	configuration,	see	the	NSX	Product	Documentation.	5.6						Service	Insertion	The	value	of	NSX	security	extends	beyond	NSX	to	your	pre-existing	security	infrastructure;	NSX	is	the	mortar	that	ties	your	security	bricks	to	build	a	stronger	wall.	Legacy	security	strategies	were	intolerant	of	pre-existing	security
infrastructure.		Anyone	who	had	a	Checkpoint	firewall	and	wanted	to	move	to	a	Palo	Alto	Networks	firewall	would	run	the	2	managers,	side	by	side	until	the	transition	was	complete.	Troubleshooting	during	this	transition	period	required	a	lot	of	chair	swiveling.	NSX	brings	a	new	model,	complementing	pre-existing	infrastructure.	Service	Insertion	is	the	feature	which	allows	NSX	firewalls	(both	gateway	and	DFW)	to	send	traffic	to	legacy	firewall	infrastructure	for	processing.		This	can	be	done	as	granularly	as	a	port	level,	without	any	modification	to	existing
network	architecture.	Service	Insertion	not	only	sends	the	traffic	to	other	services	for	processing,	Service	Insertion	offers	and	a	deep	integration	which	allows	the	exchange	of	NSX	Manager	objects	to	SI	service	managers.		So,	a	group	in	NSX	which	is	comprised	on	VMs	which	a	substring	of	“web”	(for	example)	would	get	shared	to	the	SI	service	manager.		Thus,	when	a	new	VM	is	spun	up	which	becomes	a	member	of	the	new	group,	the	NSX	Manager	will	send	that	update	to	the	SI	Service	Manager	so	that	policy	can	be	consistently	applied	across	platforms.
5.7						Additional	Security	Features	NSX-T	extends	the	security	solution	beyond	DFW	with	additional	features	to	enhance	data	center	security	posture	on	top	of	micro-segmentation.	These	features	include:	●							SpoofGuard	-	Provides	protection	against	spoofing	with	MAC+IP+VLAN	bindings.	This	can	be	enforced	at	a	per	logical	port	level.	The	SpoofGuard	feature	requires	static	or	dynamic	bindings	(e.g.,	DHCP/ARP	snooping)	of	IP+MAC	for	enforcement.	●							Segment	Security	-	Provides	stateless	L2	and	L3	security	to	protect	segment	integrity	by	filtering
out	malicious	attacks	(e.g.,	denial	of	service	using	broadcast/multicast	storms)	and	unauthorized	traffic	entering	segment	from	VMs.	This	is	accomplished	by	attaching	the	segment	security	profile	to	a	segment	for	enforcement.	The	segment	security	profile	has	options	to	allow/block	bridge	protocol	data	unit	(BPDU),	DHCP	server/client	traffic,	non-IP	traffic.	It	allows	for	rate	limiting	of	broadcast	and	multicast	traffic,	both	transmitted	and	received.	5.8						NSX-T	Security	Enforcement	–	Agnostic	to	Network	Isolation	The	NSX-T	security	solution	is	agnostic	to
network	isolation	and	topology	requirements.	Below	are	the	different	possible	deployment	options	for	adapting	NSX-T	micro-segmentation	policies	based	on	different	network	isolation	requirements.	The	consumption	of	security	policies	requires	no	changes	from	policy	planning,	design,	and	implementation	perspective.	This	applies	to	all	of	the	deployment	options	mentioned	below.	However,	the	following	initial	provisioning	steps	required	to	enforce	NSX	security	policies:			a)	Preparation	of	compute	hosts	for	NSX-T.			b)	Create	VLAN	or	overlay	segments	on
NSX-T	based	on	network	isolation	and			c)		Move	relevant	workloads	to	relevant	VLAN	or	overlay	segments/networks	on	compute	hosts	for	policy	enforcement.	5.8.1					NSX-T	Distributed	Firewall	for	VLAN	Backed	workloads		This	is	a	very	common	use	case	for	our	customer	who	is	looking	at	NSX-T	as	a	platform	only	for	micro-segmentation	security	use	case	without	changing	existing	network	isolation,	which	is	VLAN	backed.	This	is	the	ideal	use	case	for	a	brownfield	deployment	where	customer	wants	to	enhance	the	security	posture	for	existing	applications
without	changing	network	design.	The	following	diagram	depicts	this	use	case	with	logical	and	physical	topology.	Figure	5‑10:	NSX-T	DFW	Logical	topology	–	VLAN	Backed	Workloads	Figure	5‑11:	NSX-T	DFW	Physical	Topology	–	VLAN	Backed	Workloads	5.8.2					NSX-T	Distributed	Firewall	for	Mix	of	VLAN	and	Overlay	backed	workloads	This	use	case	mainly	applies	to	customer	who	wants	to	adapt	NSX-T	micro-segmentation	policies	to	all	of	their	workloads	and	looking	at	adapting	NSX-T	network	virtualization	(overlay)	for	their	application	networking	needs
in	phases.	This	scenario	may	arise	when	customer	starts	to	either	deploy	new	application	with	network	virtualization	or	migrating	existing	applications	in	phases	from	VLAN	to	overlay	backed	networking	to	avail	the	advantages	of	NSX-T	network	virtualization.	This	scenario	is	also	common	where	there	are	applications	which	prevent	overlay	backed	networking	from	being	adopted	fully	(as	described	in	section	above).	The	order	of	operations	in	this	environment	is	as	follows:	on	egress,	DFW	processing	happens	first,	then	overlay	network	processing	happens
second.		On	traffic	arrival	at	a	remote	host,	overlay	network	processing	happens	first,	then	DFW	processing	happens	before	traffic	arrives	at	the	VM.	The	following	diagram	depicts	this	use	case	with	logical	and	physical	topology.	Figure	5‑12:	NSX-T	DFW	Logical	Topology	–	Mix	of	VLAN	&	Overlay	Backed	Workloads	Figure	5‑13:	NSX-T	DFW	Physical	Topology	–	Mix	of	VLAN	&	Overlay	Backed	Workloads	5.8.3					NSX-T	Distributed	Firewall	for	Overlay	Backed	workloads	In	this	use	case	where	all	the	virtualized	applications	are	hosted	or	moved	from	VLAN	to
NSX-T	overlay	backed	networking	from	the	network	isolation	perspective.	This	could	apply	to	green	field	deployment	or	final	phase	of	brownfield	deployments	where	all	virtualized	applications	have	been	moved	from	VLAN	to	NSX-T	overlay	backed	networking.	In	summary,	NSX-T	Platform	enforces	micro-segmentation	policies	irrespective	of	network	isolation,	VLAN	or	overlay	or	Mix,	without	having	to	change	policy	planning,	design,	and	implementation.	A	user	can	define	NSX-T	micro-segmentation	policy	once	for	the	application,	and	it	will	continue	to	work
as	you	migrate	application	from	VLAN	based	networking	to	NSX-T	overlay	backed	networking.	5.9						Gateway	Firewall	The	NSX-T	Gateway	firewall	provides	essential	perimeter	firewall	protection	which	can	be	used	in	addition	to	a	physical	perimeter	firewall.	Gateway	firewall	service	is	part	of	the	NSX-T	Edge	node	for	both	bare	metal	and	VM	form	factors.	The	Gateway	firewall	is	useful	in	developing	PCI	zones,	multi-tenant	environments,	or	DevOps	style	connectivity	without	forcing	the	inter-tenant	or	inter-zone	traffic	onto	the	physical	network.	The	Gateway
firewall	data	path	uses	DPDK	framework	supported	on	Edge	to	provide	better	throughput.	Optionally,	Gateway	Firewall	service	insertion	capability	can	be	leveraged	with	the	partner	ecosystem	to	provide	integrated	security	which	leverages	existing	security	investments.	This	enhances	the	security	posture	by	providing	next-generation	firewall	(NGFW)	services	on	top	of	native	firewall	capability	NSX-T	provides.	This	is	applicable	for	the	design	where	security	compliance	requirements	mandate	zone	or	group	of	workloads	need	to	be	secured	using	NGFW,	for
example,	DMZ	or	PCI	zones	or	Multi-Tenant	environments.	Service	insertion	leverages	existing	security	infrastructure	investments	and	extends	NSX	dynamic	security	groups	to	them.	5.9.1					Consumption	NSX-T	Gateway	firewall	is	instantiated	per	gateway	and	supported	at	both	Tier-0	and	Tier-1.	Gateway	firewall	works	independently	of	NSX-T	DFW	from	a	policy	configuration	and	enforcement	perspective,	although	objects	can	be	shared	from	the	DFW.	A	user	can	consume	the	Gateway	firewall	using	either	the	GUI	or	REST	API	framework	provided	by	NSX-T
Manager.	The	Gateway	firewall	configuration	is	similar	to	DFW	firewall	policy;	it	is	defined	as	a	set	of	individual	rules	within	a	section.	Like	the	DFW,	the	Gateway	firewall	rules	can	use	logical	objects,	tagging	and	grouping	constructs	(e.g.,	Groups)	to	build	policies.	Similarly,	regarding	L4	services	in	a	rule,	it	is	valid	to	use	predefined	Services,	custom	Services,	predefined	service	groups,	custom	service	groups,	or	TCP/UDP	protocols	with	the	ports.	NSX-T	Gateway	firewall	also	supports	multiple	Application	Level	Gateways	(ALGs).	The	user	can	select	an	ALG
and	supported	protocols	by	using	the	other	setting	for	type	of	service.	Gateway	FW	supports	only	FTP	and	TFTP	as	part	of	ALG.	ALGs	are	only	supported	in	stateful	mode;	if	the	section	is	marked	as	stateless,	the	ALGs	will	not	be	implemented.	When	partner	services	are	leveraged	through	service	insertion,	the	implementation	requires	registering	the	NSX	Manager	on	the	partner	management	console	and	the	registration	of	the	partner	management	console	in	the	NSX-T	manager.		Once	the	two	managers	are	integrated,	they	will	share	relevant	objects,	which
will	improve	security	policy	consistency	across	the	board.	5.9.2					Implementation	Gateway	firewall	is	an	optional	centralized	firewall	implemented	on	NSX-T	Tier-0	gateway	uplinks	and	Tier-1	gateway	links.	This	is	implemented	on	a	Tier-0/1	SR	component	which	is	hosted	on	NSX-T	Edge.	Tier-0	Gateway	firewall	supports	stateful	firewalling	only	with	active/standby	HA	mode.	It	can	also	be	enabled	in	an	active/active	mode,	though	it	will	be	only	working	in	stateless	mode.	Gateway	firewall	uses	a	similar	model	as	DFW	for	defining	policy,	and	NSX-T	grouping
construct	can	be	used	as	well.	Gateway	firewall	policy	rules	are	organized	using	one	or	more	policy	sections	in	the	firewall	table	for	each	Tier-0	and	Tier-1	Gateway.	Firewalling	at	the	perimeter	allows	for	a	coarse	grain	policy	definition	which	can	greatly	reduce	the	security	policy	size	inside.	5.9.3					Deployment	Scenarios	This	section	provides	two	examples	for	possible	deployment	and	data	path	implementation.	Gateway	FW	as	Perimeter	FW	at	Virtual	and	Physical	Boundary	The	Tier-0	Gateway	firewall	is	used	as	perimeter	firewall	between	physical	and
virtual	domains.	This	is	mainly	used	for	N-S	traffic	from	the	virtualized	environment	to	physical	world.	In	this	case,	the	Tier-0	SR	component	which	resides	on	the	Edge	node	enforces	the	firewall	policy	before	traffic	enters	or	leaves	the	NSX-T	virtual	environment.	The	E-W	traffic	continues	to	leverage	the	distributed	routing	and	firewalling	capability	which	NSX-T	natively	provides	in	the	hypervisor.			In	addition	to	firewalling,	the	T1	Gateway	can	perform	per	tenant	NAT.		This	is	highly	desirable	in	containerized	environments	to	reduce	the	consumption	of	IP
addresses.	Figure	5‑14:	Tier-0	Gateway	Firewall	–	Virtual-to-Physical	Boundary	Gateway	FW	as	Inter-tenant	FW	The	Tier-1	Gateway	firewall	is	used	as	inter-tenant	firewall	within	an	NSX-T	virtual	domain.	This	is	used	to	define	policies	between	different	tenants	who	resides	within	an	NSX-T	environment.	This	firewall	is	enforced	for	the	traffic	leaving	the	Tier-1	router	and	uses	the	Tier-0	SR	component	which	resides	on	the	Edge	node	to	enforce	the	firewall	policy	before	sending	to	the	Tier-0	Gateway	for	further	processing	of	the	traffic.	The	intra-tenant	traffic
continues	to	leverage	distributed	routing	and	firewalling	capabilities	native	to	the	NSX-T.	Figure	5‑15:	Tier-1	Gateway	Firewall	-	Inter-tenant	Gateway	FW	with	NGFW	Service	Insertion	–	As	perimeter	or	Inter	Tenant	Service	This	deployment	scenario	extends	the	Gateway	Firewall	scenarios	depicted	above	with	additional	capability	to	insert	the	NGFW	on	top	of	native	firewall	capability	NSX-T	Gateway	Firewall	provides.	This	is	applicable	for	the	design	where	security	compliance	requirements	mandate	zones	or	groups	of	workloads	be	secured	using	NGFW,	for
example,	DMZ	or	PCI	zones	or	Multi-Tenant	environments.	The	service	insertion	can	be	enabled	per	Gateway	for	both	Tier-0	and	Tier-1	Gateways	depending	on	the	scenario.		Because	traffic	is	redirected	to	partner	services	in	a	policy	model,	traffic	can	be	redirected	by	protocol	only	for	relevant	traffic.	This	allows	the	insertion	of	partner	firewalls	in	a	surgical	manner,	without	disruption	to	underlying	network	topology.	As	a	best	practice,	Gateway	firewall	policy	can	be	leveraged	as	the	first	level	of	defense	to	allow	traffic	based	on	L3/L4	policy	and	partner
services	as	the	second	level	defense.		To	do	this,	define	policy	on	Gateway	firewall	to	redirect	the	traffic	which	needs	to	be	inspected	by	NGFW.	This	will	optimize	the	NGFW	performance	and	throughput,	as	well	as	reduce	the	capacity	required	of	the	partner	service	(which	often	impacts	license	cost).	The	following	diagram	provides	the	logical	representation	of	overall	deployment	scenario.	Please	refer	to	NSX-T	interoperability	matrix	to	check	certified	partners	for	the	given	use	case.	Figure	5‑16:	Gateway	Firewall	–	Service	Insertion	5.10		Endpoint	Protection
with	NSX-T	NSX-T	provides	the	Endpoint	Protection	platform	to	allow	3rd	party	partners	to	run	agentless	Anti-Virus/Anti-Malware	(AV/AM)	capabilities	for	virtualized	workloads	on	ESXi.		Traditional	AV/AM	services	require	agents	be	run	inside	the	guest	operating	system	of	a	virtual	workload.		These	agents	can	consume	small	amounts	of	resources	for	each	workload	on	an	ESXi	host.		In	the	case	of	Horizon,	VDI	desktop	hosts	typically	attempt	to	achieve	high	consolidation	ratios	on	the	ESXi	host,	providing	10s	to	100s	of	desktops	per	ESXi	host.		With	each
AV/AM	agent	inside	the	virtualized	workload	consuming	a	small	amount	of	virtual	CPU	and	memory,	the	resource	costs	can	be	noticeable	and	possibly	reduce	the	overall	number	of	virtual	desktops	an	ESXi	host	can	accommodate,	thus	increasing	the	size	and	cost	of	the	overall	VDI	deployment.		The	Guest	Introspection	platform	allows	the	AV/AM	partner	to	remove	their	agent	from	the	virtual	workload	and	provide	the	same	services	using	a	Service	Virtual	Machine	(SVM)	that	is	installed	on	each	host.		These	SVMs	consume	much	less	virtual	CPU	and	memory
overall	than	running	agents	on	every	workload	on	the	ESXi	host.		Removing	the	agent	also	removes	that	processing	tax	from	the	VDI,	resulting	in	greater	individual	VDI	performance.	Many	AV/AM	partner	solutions	have	the	ability	to	add	tags	to	the	workloads	based	on	the	result	of	the	AV/AM	scan.		This	allows	for	an	automated	immediate	quarantine	policy	based	on	the	result	of	the	AV/AM	scan	with	the	definition	of	DFW	security	rules	based	on	the	partner	tags.	Figure	5‑17:	Endpoint	Protection	Components	The	Endpoint	Protection	platform	for	NSX-T
following	a	simple	3	step	process	to	use.		Figure	5‑18:	Endpoint	Protection	Steps	Registration	Registration	of	the	VMware	Partner	console	with	NSX-T	and	vCenter.	Deployment	Creating	a	Service	Deployment	of	the	VMware	Partner	SVM	and	deployment	to	the	ESXi	Clusters.		The	SVMs	require	a	Management	network	with	which	to	talk	to	the	Partner	Management	Console.		This	can	be	handled	by	IP	Pool	in	NSX-T	or	by	DHCP	from	the	network.		Management	networks	must	be	on	a	VSS	or	VDS	switch.		Consumption	Consumption	of	the	Endpoint	Protection
platform	consists	of	creating	a	Service	Profile	of	which	references	the	Service	Deployment	and	then	creating	Service	Endpoint	Protection	Policy	with	Endpoint	Rule	that	specifies	which	Service	Profile	should	be	applied	to	what	NSX-T	Group	of	Virtual	Machines.		5.11	Recommendation	for	Security	Deployments	This	list	provides	best	practices	and	recommendation	for	the	NSX-T	DFW.	These	can	be	used	as	guidelines	while	deploying	an	NSX-T	security	solution.	●							For	individual	NSX-T	software	releases,	always	refer	to	release	notes,	compatibility	guides,
hardening	guide	and	recommended	configuration	maximums..	●							Exclude	management	components	like	vCenter	Server,	and	security	tools	from	the	DFW	policy	to	avoid	lockout,	at	least	in	the	early	days	of	DFW	use.		Once	there	is	a	level	of	comfort	and	proficiency,	the	management	components	can	be	added	back	in	with	the	appropriate	policy.	This	can	be	done	by	adding	those	VMs	to	the	exclusion	list.	●							Use	the	Applied	To	field	in	the	DFW	to	limit	the	rule	growth	on	individual	vNICs.	●							Choose	the	policy	methodology	and	rule	model	to	enable
optimum	groupings	and	policies	for	micro-segmentation.	●							Use	NSX-T	tagging	and	grouping	constructs	to	group	an	application	or	environment	to	its	natural	boundaries.	This	will	enable	simpler	policy	management.	●							Consider	the	flexibility	and	simplicity	of	a	policy	model	for	Day-2	operations.	It	should	address	ever-changing	deployment	scenarios	rather	than	simply	be	part	of	the	initial	setup.	●							Leverage	DFW	category	and	policies	to	group	and	manage	policies	based	on	the	chosen	rule	model.	(e.g.,	emergency,	infrastructure,	environment,
application...)	●							Use	an	explicit	allow	model;	create	explicit	rules	for	allowed	traffic	and	change	DFW	the	default	rule	from	“allow”	to	“drop”.	5.11.1		A	Practical	Approach	to	Building	Micro-Segmentation	Policy	The	ideal	way	to	have	least	privilege	security	model	is	to	define	security	policies	explicitly	allowing	all	the	applications	within	your	data	center	and	denying	all	other	traffic	by	default.	However,	it	is	a	big	challenge	to	profile	tens/hundreds	of	applications	and	build	security	policies	for	each.		Often	times,	application	owners	don’t	know	very	much	about
their	application’s	details,	which	further	complicates	the	process.	This	may	take	some	time	to	profile	your	application	and	come	up	with	a	port	defined	security	policy.		Instead	of	waiting	for	profiling	of	an	application	to	be	complete,	one	can	start	with	basic	outside-in	fencing	approach	to	start	defining	broader	security	policies	to	enhancing	the	security	posture	and	then	move	gradually	to	the	desired	explicit	allow	model	over	time	as	you	complete	the	application	profiling.			The	tag	model	of	NSX	allows	this	to	be	done	quite	easily	as	one	can	start	with	just	Prod
and	Non-prod	tags,	then	add	more	detailed	tags	as	appropriate	(PCI,	HR,	Finance,	etc)	to	applicable	VMs.		(Note:	Regardless	of	approach,	experience	has	shown	that	the	best	starting	point	is	common	services	such	as	DNS,	NTP,	AD,	SNMP,	etc.		A	great	second	step	is	the	backup	infrastructure.)	In	this	section	we	will	walk	you	through	a	practical	approach	to	start	securing	the	data	center	workloads	in	a	phased	outside-in	fencing	approach	as	you	are	working	on	profiling	your	application	to	provide	zero	trust	model.	First,	we	layout	the	data	center	topology	and
requirements.	Then	we	will	walk	you	through	an	approach	to	micro-segmentation	policies	in	phases.	This	approach	can	be	applied	to	both	brownfield	and	green	field	deployment.	5.11.1.1			Data	Center	Topology	and	Requirements:	The	following	data	center	topology	used	which	matches	with	most	of	our	customer	data	center.	This	approach	can	be	applied	to	both	brownfield	and	greenfield	deployment.	Figure	5‑19:	Data	Center	Topology	Example	The	data	center	has	following	characteristics:	1)					Application	deployment	is	split	into	two	zones	-	production	&
development	2)					Multiple	applications	hosted	in	both	DEV	and	PROD	ZONE	3)					All	application	access	same	set	of	common	services	such	as	AD,	DNS	and	NTP	The	data	center	network	has	following	characteristics:	The	Zones	have	been	assigned	with	dedicated	IP	CIDR	block.	Development	zone	has	10.1.16.0/20	and	10.1.32.0/20	IP	CIDR	block	assigned	Production	zone	has	10.2.16.0/20	and	10.2.32.0/20	IP	CIDR	block	assigned.	Infrastructure	Services	have	10.3.16.0/24	subnet	assigned.	The	application	within	the	ZONE	would	be	given	IP	subnets	within	that
ZONE	specific	CIDR	block.	In	most	cases	application	VM’s	belonging	to	same	application	share	same	L2	segments.	In	some	cases,	they	have	separate	L2	segments,	especially	for	Database’s.		(In	brownfield	environments	where	L2	segments	may	be	mixed	populations	of	workloads,	one	can	easily	create	static	groups	of	workloads.)	The	data	center	security	has	following	Requirements:	1)					All	applications	need	to	be	allowed	communicate	with	common	Infrastructure	services.	2)					Between	the	ZONE	-	Workloads	should	not	be	allowed	to	communicate	with	each
other.	3)					Within	the	ZONE	-	Applications	VM’s	belonging	to	a	certain	application	should	not	be	talking	to	other	application	VM’s.	4)					Some	application	within	a	ZONE	have	common	Database	services	which	runs	within	that	ZONE.	5)					Log	all	unauthorized	communication	between	workloads	for	monitoring	and	for	compliance.	5.11.1.2			Phased	approach	for	NSX-T	micro-segmentation	policies:	Phase-1:		Define	common-services	policy.	Here	are	the	suggested	steps:	Define	NSX-T	Groups	for	each	of	the	Infrastructure	Services.	Following	example	shows	the
group	for	DNS	and	NTP	servers	with	IP	addresses	of	the	respective	servers	as	group	members.	Figure	5‑20:	NSX-T	Groups	Example	Define	policy	for	common	services;	like	DNS,	NTP	as	in	the	figure	below.	a)						Define	this	policy	under	Infrastructure	tab	as	shown	below.		b)					Have	two	rules	allows	all	workloads	to	access	the	common	services	using	GROUPS	created	in	step	1	above.	c)						Use	Layer	7	context	profile,	DNS	and	NTP,	in	the	rule	to	further	enhance	the	security	posture.	d)					Have	catch-all	deny	rule	to	deny	any	other	destination	for	the	common
services	with	logging	enabled,	for	compliance	and	monitoring	any	unauthorized	communication.	Note:	If	the	management	entities	are	not	in	an	exclusion	list,	this	section	would	need	to	have	rules	to	allow	the	required	protocols	between	the	appropriate	entities.		See	for	the	ports	for	all	VMware	products.	Figure	5‑21:		Common	Services	Policy	Example	Phase-2:	Define	Segmentation	around	ZONES	-	by	having	an	explicit	allow	policy	between	ZONES	As	per	the	requirement,	define	policy	between	zones	to	deny	any	traffic	between	zones.	This	can	be	done	using
IP	CIDR	block	as	data	center	zones	have	pre-assigned	IP	CIDR	block.		Alternatively,	this	can	be	done	using	workload	tags	and	other	approach.	However,	IP-GROUP	based	approach	is	simpler	(as	admin	has	pre-assigned	IP	CIDR	Block	per	zone),	no	additional	workflow	to	tag	workload	and	also	less	toll,	compare	to	tagged	approach,	on	NSX-T	Manager	and	control	plane.	Tagged	approach	may	add	additional	burden	on	NSX-T	Manager	to	compute	polices	and	update,	in	an	environment	with	scale	and	churn.	As	a	rule	of	thumb,	the	larger	the	IP	block	that	can	be
defined	in	a	rule,	the	more	the	policy	can	be	optimized	using	CIDR	blocks.	In	cases	where	there	is	no	convenient	CIDR	block	to	group	workloads,	static	groupings	may	be	used	to	create	entities	without	churn	on	the	NSX	Manager.	Here	are	the	suggested	steps:	1-					Define	2	NSX-T	Groups	for	each	of	the	ZONE,	Development	and	Production,	say	DC-ZONE-DEV-IP	&	DC-ZONE-PROD-IP	with	respective	IP	CIDR	BLOCKs	associated	with	the	respective	zones	as	members.	Figure	5‑22:	Policies	Between	Zones	Example	2-					Define	policy	in	environment	category
using	the	IP	GROUPS	created	in	step-1	to	restrict	all	communication	between	Development	and	Production	ZONE’s.	3-					Have	logging	enabled	for	this	policy	to	track	all	unauthorized	communication	attempts.	(Note:	In	many	industries,	it	is	sufficient	to	log	only	the	default	action	for	troubleshooting	purposes.		In	others,	there	may	be	a	compliance	mandate	to	log	every	action.		Logging	requirements	are	driven	by	the	balance	between	storage	costs	and	compliance	requirements.)	Figure	5‑23:		Policy	Example				Phase-3:	Define	Segmentation	around	every
Application,	one	at	a	time	This	is	two	step	approach	to	build	a	policy	for	the	application.	First	step	is	to	start	with	fence	around	application	to	build	security	boundary.	Then	as	a	second	step	profile	the	application	further	to	plan	and	build	more	granular	port-defined	security	policies	between	tiers.	Start	with	DEV	zone	first	and	identify	an	application	to	be	micro-segmented,	say	DEV-ZONE-APP-1.	Identify	all	VM’s	associated	with	the	Application	within	the	zone.	Check	application	has	its	own	dedicated	network	Segments	or	IP	Subnets.	If	yes,	you	can	leverage
Segment	or	IP-based	Group.	If	no,	tag	application	VM’s	with	uniquely	zone	and	application	specific	tags,	say	ZONE-DEV	&	APP-1.	Check	this	application	requires	any	other	communication	other	than	infra	services	and	communication	within	group.	For	example,	APP	is	accessed	from	outside	on	HTTPS.	Once	you	have	above	information	about	DEV-ZONE-APP-1,	create	segmentation	around	application	by	following	steps:	1-					Apply	two	tags	to	all	the	VM’s	belonging	to	APP-1	in	the	ZONE	DEV,	ZONE-DEV	&	APP-1.			Figure	5‑24:	Segmentation	Example	2-				
Create	a	GROUP,	say	“ZONE-DEV-APP-1”	with	criteria	to	match	on	tag	equal	to	“ZONE-DEV	&	APP-1”.	Figure	5‑25:	Group	Example	3-					Define	a	policy	under	Application	category	with	3	rules	as	in	the	Figure	5‑26:	Application	Policy	Example.		Have	“Applied	To”	set	to	“ZONE-DEV-APP-1”	to	limit	the	scope	of	policy	only	to	the	application	VM’s.	The	first	rule	allows	all	internal	communications	between	the	application	VM’s.	Enable	logging	for	this	rule	to	profile	the	application	tiers	and	protocols.	(Each	log	entry	will	contain	5	tuple	details	about	every
connection.)	The	second	rule	allows	access	to	front	end	of	the	application	from	outside.	Use	the	L7	context	profile	to	allow	only	SSL	traffic.	The	below	example	uses	Exclude	Source	from	within	ZONE,	so	that	application	is	only	accessible	from	outside,	not	from	within	except	APP’s	other	VM’s,	as	per	rule	one.	Default	deny	all	other	communication	to	these	“ZONE-DEV-APP-1”	VM’s.	Enable	log	for	compliance	and	monitoring	any	unauthorized	communication.	Figure	5‑26:	Application	Policy	Example	Phase-4:	Review	Logs	for	Application	Profile.	Log	entries	will
identify	the	direction	(In/Out)	as	well	as	the	protocol	and	source	IP	address/port	and	destination	IP	addresses/port	for	each	flow.		If	using	the	log	file	for	policy	definition,	it	is	often	advisable	to	process	the	log	files	using	excel	to	sort	traffic.		Typically,	2	sheets	are	created,	one	for	IN	traffic	and	one	for	OUT	traffic.		Then,	each	sheet	is	sorted	by	port	first	then	IP	address.		(In	the	case	of	IN	traffic	by	destination	IP	address	and	in	the	case	of	OUT	traffic	by	source	address.	This	sorting	methodology	allows	for	the	grouping	of	multiple	servers	serving/accessing	the
same	traffic.)		For	each	of	these	groupings,	a	rule	can	be	inserted	above	rule	1	for	the	application.		This	will	prevent	the	known	traffic	from	appearing	in	the	log.	Once	sufficient	confidence	is	gained	that	the	application	is	completely	understood	(this	is	typically	when	the	logs	are	empty),	the	original	rule	ZONE-DEV-APP-1	can	be	removed.		At	this	point,	the	security	model	has	transitioned	from	zone-based	to	micro	segmentation.	(Note:	Certain	environments	-	such	as	labs	-	may	be	best	served	by	ring	fencing,	whereas	other	environments	may	wish	to	add	service
insertion	for	certain	traffic	types	on	top	of	micro	segmentation	–	such	as	sensitive	financial	information.		The	value	of	NSX	is	that	a	customer	provides	the	means	to	implement	appropriate	security	in	one	environment	without	impacting	the	other.)	Phase-5:	Repeat	Phase-3	for	other	applications	and	ZONES.	Repeat	the	same	approach	as	in	Phase-3	for	other	applications,	to	have	security	boundary	for	every	application	within	the	ZONE-DEV	and	ZONE-PROD.	Note	that	the	securing	of	each	of	these	applications	can	happen	asynchronously,	without	impact	to	the
others.		This	accommodates	application-specific	maintenance	windows,	where	required.	Phase-6:		Define	Emergency	policy,	Kill	Switch,	in	case	of	Security	Event		An	emergency	policy	mainly	leveraged	for	following	use	case	and	enforced	on	top	of	the	firewall	table:	1-					To	quarantine	vulnerable	or	compromised	workloads	in	order	to	protect	other	workloads.	2-					May	want	to	explicitly	deny	known	bad	actors	by	their	IP	Subnet	based	on	GEO	location	or	reputation.		This	policy	is	defined	in	Emergency	Category	as	shown:	1-					First	two	rules	quarantine	all
traffic	from	workloads	belonging	to	group	GRP-QUARANTINE.	“GRP-QUARANTINE”	is	a	group	which	matches	all	VM	with	tag	equal	to	“QUARANTINE”.	(If	guest	introspection	is	implemented,	the	AV/AM	tags	can	be	used	to	define	different	quarantine	levels.)	In	order	to	enforce	this	policy	to	vulnerable	VM’s,	add	tag	“QUARANTINE”	to	isolate	the	VM’s	and	allow	only	admin	to	access	the	hosts	to	fix	the	vulnerability.	2-					Other	two	rule	uses	Group	with	known	bad	IP’s	to	stop	any	communication	with	those	IP’s.	Figure	5‑27:	Emergency	Category	Example	In
creating	these	policies,	the	iterative	addition	of	rules	to	the	policy	is	something	that	can	be	done	at	any	time.		It	is	only	when	the	action	of	the	default	rule	changes	from	allow	to	deny/drop	that	a	maintenance	window	is	advised.		As	logging	has	been	on	throughout	the	process,	it	is	highly	unusual	to	see	an	application	break	during	the	window.		What	is	most	frequently	the	case	is	that	something	within	the	next	week	or	month	may	emerge	as	an	unforeseen	rule	that	was	missed.		For	this	reason,	it	is	advised	that	even	in	environments	where	compliance	does	not
dictate	the	collection	of	logs,	the	Deny	All	rule	be	set	to	logging.		Aside	from	the	security	value	of	understanding	the	traffic	that	is	being	blocked,	the	Deny	All	rule	logs	are	very	useful	when	troubleshooting	applications.	At	this	point	you	have	basic	level	of	micro-segmentation	policy	applied	to	all	the	workloads	to	shrink	the	attack	surface.	As	a	next	step	you	further	break	the	application	into	application	tiers	and	its	communication	by	profiling	application	flows	using	firewall	logs	or	exporting	IPFIX	flows	to	Network	Insight	platform.	This	will	help	to	group	the
application	workload	based	on	the	function	within	the	application	and	define	policy	based	on	associated	port	&	protocols	used.	Once	you	have	these	groupings	and	protocols	identified	for	a	given	application,	update	the	policy	for	that	application	by	creating	additional	groups	and	rules	with	right	protocols	to	have	granularly	defined	rules	one	at	a	time.	With	this	approach	you	start	with	outside-in	fencing	to	start	with	micro-segmentation	policies	and	finally	come	up	with	a	granular	port-based	micro-segmentation	policy	for	all	the	application.	5.12		NSX	Firewall-
For	All	Deployment	Scenario	NSX	firewall	provides	different	security	controls:	Distribute	Firewall,	Distributed	IDS,	Gateway	Firewall	&	Bridge	Firewall,	as	an	option	to	provide	firewalling	to	different	deployment	scenarios.	A	typical	data	center	would	have	different	workloads:	VM's,	Containers,	Physical	Server,	and	a	mix	of	NSX	managed	and	non-managed	workloads.	These	workloads	may	also	have	a	combination	of	a	VLAN-based	network	or	an	NSX	based	overlay	network.	The	following	Figure	5‑28:	NSX	Firewall	For	all	Deployment	Scenario	summarizes
different	datacenter	deployment	scenarios	and	associated	NSX	firewall	security	controls,	which	best	fits	the	design.	You	can	use	same	NSX	manager	as	a	single	pane	of	glass	to	define	Security	policies	to	all	of	these	different	scenarios	using	different	security	controls.	1-	NSX	Managed	Workloads	with	standard	VLAN	based	networking.	NSX	Distributed	Firewall	can	be	used	to	protect	NSX	managed	VM's,	Containers	&	Physical	Server	workloads.	2-	NSX	Managed	Workloads	with	NSX	Overlay	for	networking:	NSX	Distributed	Firewall	can	be	used	to	protect	NSX
managed	VM's,	Containers	&	Physical	Server	workloads.	3-	Non-NSX	Managed	workloads	on	traditional	VLAN	based	network.								NSX	Gateway	Firewall	can	provide	the	Inter	VLAN	routing	and	Firewalling.	The	Service	Interface	on	NSX	Gateway	is	used	as	a	gateway	&	firewall	for	all	non-NSX	managed	VLAN	workloads.	4-	NSX	managed	Overlay	workload	bridged	to	Non-NSX	managed	VLAN.	This	is	the	bridge	scenario	where	an	Overlay	network	is	extended	at	Laye-2	into	a	VLAN	network	using	NSX	Bridge.	In	this	case,	NSX	managed	Overlay	workloads	can
use	DFW/D-IDS,	and	Bridge	Firewall	can	secure	traffic	at	the	boundary	between	VLAN	and	overlay	network.	Figure	5‑28:	NSX	Firewall	For	all	Deployment	Scenario	A	load-balancer	defines	a	virtual	service,	or	virtual	server,	identified	by	a	virtual	IP	address	(VIP)	and	a	UDP/TCP	port.	This	virtual	server	offers	an	external	representation	of	an	application	while	decoupling	it	from	its	physical	implementation:	traffic	received	by	the	load	balancer	can	be	distributed	to	other	network-attached	devices	that	will	perform	the	service	as	if	it	was	handled	by	the	virtual
server	itself.	This	model	is	popular	as	it	provides	benefits	for	application	scale-out	and	high-availability:	The	following	diagram	represents	traffic	sent	by	users	to	the	VIP	of	a	virtual	server,	running	on	a	load	balancer.	This	traffic	is	distributed	across	the	members	of	a	pre-defined	pool	of	capacity.	Figure	6‑1:		Load	Balancing	Offers	Application	Scale-out	The	server	pool	can	include	an	arbitrary	mix	of	physical	servers,	VMs	or	containers	that	together,	allow	scaling	out	the	application.	Application	high-availability:	The	load	balancer	is	also	tracking	the	health	of
the	servers	and	can	transparently	remove	a	failing	server	from	the	pool,	redistributing	the	traffic	it	was	handling	to	the	other	members:	Figure	6‑2:		Load	Balancing	Offers	Application	High-availability	Modern	applications	are	often	built	around	advanced	load	balancing	capabilities,	which	go	far	beyond	the	initial	benefits	of	scale	and	availability.	In	the	example	below,	the	load	balancer	selects	different	target	servers	based	on	the	URL	of	the	requests	received	at	the	VIP:	Figure	6‑3:		Load	Balancing	Offers	Advanced	Application	Load	Balancing	Thanks	to	its
native	capabilities,	modern	applications	can	be	deployed	in	NSX-T	without	requiring	any	third	party	physical	or	virtual	load	balancer.	The	next	sections	in	this	part	describe	the	architecture	of	the	NSX-T	load	balancer	and	its	deployment	modes.	6.1						NSX-T	Load	Balancing	Architecture	In	order	to	make	its	adoption	straightforward,	the	different	constructs	associated	to	the	NSX-T	load	balancer	have	been	kept	similar	to	those	of	a	physical	load	balancer.	The	following	diagram	show	a	logical	view	of	those	components.	Figure	6‑4:	NSX-T	Load	Balancing	Main
Components	Load	Balancer	The	NSX-T	load	balancer	is	running	on	a	Tier-1	gateway.	The	arrows	in	the	above	diagram	represent	a	dependency:	the	two	load	balancers	LB1	and	LB2	are	respectively	attached	to	the	Tier-1	gateways	1	and	2.	Load	balancers	can	only	be	attached	to	Tier-1	gateways	(not	Tier-0	gateways),	and	one	Tier-1	gateway	can	only	have	one	load	balancer	attached	to	it.	Virtual	Server	On	a	load	balancer,	the	user	can	define	one	or	more	virtual	server	(the	maximum	number	depends	on	the	load	balancer	form	factor	–	See	NSX-T	Administrator
Guide	for	load	balancer	scale	information).	As	mentioned	earlier,	a	virtual	server	is	defined	by	a	VIP	and	a	TCP/UDP	port	number,	for	example	IP:	20.20.20.20	TCP	port	80.	The	diagram	represents	four	virtual	servers	VS1,	VS2,	VS5	and	VS6.	A	virtual	server	can	have	basic	or	advanced	load	balancing	options	such	as	forward	specific	client	requests	to	specific	pools	(see	below),	or	redirect	them	to	external	sites,	or	even	block	them.	Pool	A	pool	is	a	construct	grouping	servers	hosting	the	same	application.	Grouping	can	be	configured	using	server	IP	addresses	or
for	more	flexibility	using	Groups.	NSX-T	provides	advanced	load	balancing	rules	that	allow	a	virtual	server	to	forward	traffic	to	multiple	pools.	In	the	above	diagram	for	example,	virtual	server	VS2	could	load	balance	image	requests	to	Pool2,	while	directing	other	requests	to	Pool3.	Monitor	A	monitor	defines	how	the	load	balancer	tests	application	availability.	Those	tests	can	range	from	basic	ICMP	requests	to	matching	patterns	in	complex	HTTPS	queries.	The	health	of	the	individual	pool	members	is	then	validated	according	to	a	simple	check	(server	replied),
or	more	advanced	ones,	like	checking	whether	a	web	page	response	contains	a	specific	string.	Monitors	are	specified	by	pools:	a	single	pool	can	use	only	1	monitor,	but	the	same	monitor	can	be	used	by	different	Pools.	6.2						NSX-T	Load	Balancing	deployment	modes	NSX-T	load	balancer	is	flexible	and	can	be	installed	in	either	traditional	in-line	or	one-arm	topologies.	This	section	goes	over	each	of	those	options	and	examine	their	traffic	patterns.	6.2.1					In-line	load	balancing	In	in-line	load	balancing	mode,	the	clients	and	the	pool	servers	are	on	different	side
of	the	load	balancer.	In	the	design	below,	the	clients	are	on	the	Tier-1	uplink	side,	and	servers	are	on	the	Tier-1	downlink	side:	Figure	6‑5:		In-Line	Load	Balancing	Because	the	traffic	between	client	and	servers	necessarily	go	through	the	load-balancer,	there	is	no	need	to	perform	any	LB	Source-NAT	(Load	Balancer	Network	Address	Translation	at	virtual	server	VIP).	The	in-line	mode	is	the	simplest	load-balancer	deployment	model.	Its	main	benefit	is	that	the	pool	members	can	directly	identify	the	clients	from	the	source	IP	address,	which	is	passed	unchanged



(step2).	The	load-balancer	being	a	centralized	service,	it	is	instantiated	on	a	Tier-1	gateway	SR	(Service	Router).	The	drawback	from	this	model	is	that,	because	the	Tier-1	gateway	now	has	a	centralized	component,	East-West	traffic	for	Segments	behind	different	Tier-1	will	be	pinned	to	an	Edge	node	in	order	to	get	to	the	SR.	This	is	the	case	even	for	traffic	that	does	not	need	to	go	through	the	load-balancer.	6.2.2					One-arm	load	balancing	In	one-arm	load	balancing	mode,	both	client	traffic	(client	traffic	to	the	load-balancer	VIP)	and	server	traffic	(load-
balancer	to	server)	use	the	same	load	balancer	interface.	In	that	case,	LB-SNAT	will	be	used	to	make	sure	that	the	traffic	from	the	servers	back	to	the	client	indeed	go	through	the	load-balancer.	There	are	two	variations	over	this	one-arm	load-balancing	scenario:	a	case	where	both	clients	are	servers	are	on	the	same	subnet	and	a	case	where	they	are	on	different	subnets.	For	both	cases	the	solution	leverages	load-balancer	source	NAT	in	order	to	make	sure	that	traffic	from	a	server	to	its	clients	is	directed	to	the	load-balancer.	As	a	result,	the	server	will	not	see
the	real	IP	address	of	the	clients.	Note	that	the	load-balancer	can	inject	an	“X-Forwarded-For”	header	for	HTTP/HTTPS	traffic	in	order	to	work	around	this	issue.	6.2.2.1							Clients	and	servers	on	the	same	subnet	In	the	design	below,	the	clients	and	servers	are	on	the	same	Tier-1	gateway	downlink.	Figure	6‑6:		One-Arm	Load	Balancing	with	Clients	and	Servers	on	the	same	segment	The	need	for	a	Tier-1	SR	in	for	the	centralized	load-balancer	service	result	in	East-West	traffic	for	Segments	behind	different	Tier-1	being	pinned	to	an	Edge	node.	This	is	the	same
drawback	as	for	the	inline	model	described	in	the	previous	part.	6.2.2.2							Load	Balancer	One-Arm	attached	to	Segment	In	the	design	below,	the	blue	Tier-1	gateway	does	not	run	any	load-balancer	service.	Instead,	the	load-balancer	has	been	deployed	as	a	standalone	Tier-1	gateway	(represented	in	orange	in	the	diagram),	with	a	single	Service	Interface.	This	gateway	is	acting	as	an	appliance	instantiating	a	load-balancer.	This	way,	several	segments	below	the	blue	Tier-1	gateway	can	have	their	own	dedicated	load-balancer.	Figure	6‑7:		Load	Balancer	One-
Arm	attached	to	segment	overlay	This	design	allows	for	better	horizontal	scale,	as	an	individual	segment	can	have	its	own	dedicated	load-balancer	service	appliance(s).	This	flexibility	in	the	assignment	of	load-balancing	resources	comes	at	the	expense	of	potentially	instantiating	several	additional	Tier-1	SRs	on	several	Edge	nodes.	Because	the	load-balancer	service	has	its	dedicated	appliance,	in	East-West	traffic	for	Segments	behind	different	Tier-1	gateway	(the	blue	Tier-1	gateway	in	the	above	diagram)	can	still	be	distributed.	The	diagram	above	represented
a	Tier-1	One-Arm	attached	to	overlay	segment.	Figure	6‑8:		Load	Balancer	One-Arm	attached	to	segment	VLAN	Tier-1	One-Arm	LB	can	also	be	attached	to	physical	VLAN	segments	as	shown	in	above	figure,	and	thus	offering	load	balancing	service	even	for	applications	on	VLAN.	In	this	use	case,	the	Tier-1	interface	is	also	using	a	Service	Interface,	but	this	time	connected	to	a	segment-VLAN	instead	of	a	segment-overlay.	6.3						NSX-T	load-balancing	technical	details	This	section	provides	additional	details	on	how	the	load-balancer	components	are	physically
implemented	in	an	NSX-T	environment.	Even	if	it’s	not	necessary	for	implementing	the	designs	described	in	the	previous	part,	understanding	the	traffic	flow	between	the	components,	the	high-availability	model	or	the	way	the	monitor	service	is	implemented	will	help	the	reader	optimize	resource	usage	in	their	network.	6.3.1					Load-balancer	high-availability	The	load-balancer	is	a	centralized	service	running	on	a	Tier-1	gateway,	meaning	that	it	runs	on	a	Tier-1	gateway	Service	Router	(SR).	The	load-balancer	will	thus	run	on	the	Edge	node	of	its	associated
Tier-1	SR,	and	its	redundancy	model	will	follow	the	Edge	high-availability	design.	Figure	6‑9:		Load	Balancing	High-Availability	The	above	diagram	represents	two	Edge	nodes	hosting	three	redundant	Tier-1	SRs	with	a	load-balancer	each.	The	Edge	High	Availability	(HA)	model	is	based	on	periodic	keep	alive	messages	exchanged	between	each	pair	of	Edges	in	an	Edge	Cluster.	This	keepalive	protects	against	the	loss	of	an	Edge	as	a	whole.	In	the	above	diagram,	should	Edge	node	2	go	down,	the	standby	green	SR	on	Edge	node	1,	along	with	its	associated	load-
balancer,	would	become	active	immediately.	There	is	a	second	messaging	protocol	between	the	Edges.	This	one	is	event	driven	(not	periodic),	and	per-application.	This	means	that	if	a	failure	of	the	load-balancer	of	the	red	Tier-1	SR	on	Edge	node	1	is	detected,	this	mechanism	can	trigger	a	failover	of	just	this	red	Tier-1	SR	from	Edge	node	1	to	Edge	node	2,	without	impacting	the	other	services.	The	active	load	balancer	service	will	always	synchronize	the	following	information	to	the	standby	load	balancer:	State	Synchronization	L4	Flow	State	Source-IP
Persistence	State	Monitor	State	This	way,	in	case	of	failover,	the	standby	load	balancer	(and	its	associated	Tier-1	SR)	can	immediately	take	over	with	minimal	traffic	interruption.	6.3.2					Load-balancer	monitor	The	pools	targeted	by	the	virtual	servers	configured	on	a	load-balancer	have	their	monitor	services	running	on	the	same	load-balancer.	This	ensure	that	the	monitor	service	cannot	fail	without	the	load-balancer	failing	itself	(fate	sharing.)		The	left	part	of	the	following	diagram	is	representing	the	same	example	of	relation	between	the	different	load-
balancer	components	as	the	one	used	in	part	6.1.	The	right	part	of	the	diagram	is	providing	an	example	of	where	those	components	would	be	physically	located	in	a	real-life	scenario.	Figure	6‑10:	NSX-T	Load	Balancer	Monitor	Here,	LB1	is	a	load-balancer	attached	to	Tier-1	Gateway	1	and	running	two	virtual	servers	VS1	and	VS2.	The	SR	for	Tier-1	Gateway	1	is	instantiated	on	Edge	1.	Similarly,	load-balancer	LB2	is	on	gateway	Tier-1	Gateway	2,	running	VS5	and	VS6.	Monitor1	and	Monitor2	protecting	server	pools	Pool1,	Pool2	and	Pool3	used	by	LB1.	As	a
result,	both	Monitor1	and	Monitor2	are	implemented	on	the	SR	where	LB1	reside.	Monitor2	is	also	polling	servers	used	by	LB2,	thus	it	is	also	implemented	on	the	SR	where	LB2	is	running.	The	Monitor2	example	highlights	the	fact	that	a	monitor	service	can	be	instantiated	in	several	physical	locations	and	that	a	given	pool	can	be	monitored	from	different	SRs.	6.3.3					Load-balancer	Layer4	or	Layer7	load	balancing	NSX-T	LB	offers	Layer4	(L4)	and	Layer7	(L7)	load	balancing.	L4	VIP	load	balances	UDP	and	TCP	connections.	The	client	connection	is	load
balanced	by	the	VIP	and	its	connection	is	terminated	by	one	of	the	pool	members.	Figure	6‑11:	NSX-T	L4	VIP	L7	VIP	load	balances	HTTP	or	HTTPS	connections.	The	client	connection	is	terminated	by	the	VIP,	and	once	the	client’s	HTTP	or	HTTPS	request	is	received	then	the	load	balancer	establishes	another	connection	to	one	of	the	pool	members.	If	needed,	some	specific	load	balancing	configuration	can	also	be	done	by	L7	VIP,	like	a	selection	of	specific	pool	members	based	on	the	request.	Figure	6‑12:	NSX-T	L7	VIP	For	L7	VIP	HTTPS,	NSX-T	LB	offers	3
modes:	HTTPS	Off-Load,	HTTPS	End-to-End	SSL,	and	SSL	Passthrough.	HTTPS	Off-Load	decrypts	the	HTTPS	traffic	at	the	VIP	and	forward	the	traffic	in	clear	HTTP	to	the	pool	members.	It	is	the	best	balance	between	security,	performance,	and	LB	flexibility:	Security:	traffic	is	encrypted	on	the	external	side.	Performance:	web	servers	don’t	have	to	run	encryption.	LB	flexibility:	all	advanced	configuration	on	HTTP	traffic	available	like	URL	load	balancing.	Figure	6‑13:	NSX-T	L7	HTTPS	Off-Load	VIP	HTTPS	End-to-End	SSL	decrypts	the	HTTPS	traffic	at	the	VIP
and	re-encrypts	the	traffic	in	another	HTTPS	session	to	the	pool	members.	It	is	the	best	security	and	LB	flexibility:	Security:	traffic	is	encrypted	end	to	end.	Performance:	this	mode	has	lower	performance	with	traffic	decrypted/encrypted	twice.	LB	flexibility:	all	advanced	configuration	on	HTTP	traffic	available	like	URL	load	balancing.	Figure	6‑14:	NSX-T	L7	HTTPS	End-to-End	VIP	HTTPS	SSL	Passthrough	does	not	decrypt	the	HTTPS	traffic	at	the	VIP	and	SSL	connection	is	terminated	on	the	pool	members.	It	is	the	best	security	and	performance,	but	with
limited	LB	flexibility:	Security:	traffic	is	encrypted	end	to	end.	Performance:	highest	performance	since	LB	does	not	terminate	SSL	traffic	LB	flexibility:	advanced	configuration	based	on	HTTP	traffic	is	not	available.	Only	advanced	configuration	based	on	SSL	traffic	is	available	like	SSL	SNI	load	balancing.	Figure	6‑15:	NSX-T	L7	SSL	Passthrough	VIP	6.3.4					Load-balancer	IPv6	NSX-T	LB	has	many	NSX-T	network	and	security	services	offers	its	service	for	IPv4	and	IPv6	clients.	Figure	6‑16:	NSX-T	LB	IPv4	and	IPv6	6.3.5					Load-balancer	traffic	flows	Tier-1
gateway	looks	like	a	single	entity	from	a	logical	point	of	view.	However,	and	as	mentioned	several	times	already,	when	a	load-balancer	is	configured	on	a	Tier-1	gateway,	it	is	physically	instantiated	on	a	Tier-1	Gateway	Service	Router.	This	part	is	exploring	the	scenarios	where	the	logical	representation	of	a	Tier-1	gateway,	hiding	the	distinction	between	SR	and	DR,	can	lead	to	confusion.	6.3.5.1							The	in-line	model	With	the	in-line	model,	traffic	between	the	clients	and	the	servers	necessarily	go	through	the	load	balancer.	Thanks	to	this	property,	there	is	no
need	for	source	LB-SNAT	in	order	to	make	sure	that	traffic	goes	through	the	load	balancer	both	ways.	The	following	diagram	shows	both	logical	and	physical	representation	of	a	Tier-1	gateway	used	to	host	a	load-balancer	operating	in-line.	Clearly,	traffic	from	clients	must	go	through	the	Tier-1	SR	where	the	load-balancer	is	instantiated	in	order	to	reach	the	server	and	vice	versa:	Figure	6‑17:	In-Line	Model:	Logical	and	Expanded	View	The	following	diagram	represents	another	scenario	that,	from	a	logical	standpoint	at	least,	looks	like	an	in-line	load-balancer
design.	However,	source	LB-SNAT	is	required	in	this	design,	even	if	the	traffic	between	the	clients	and	the	servers	cannot	apparently	avoid	the	Tier-1	gateway	where	the	load-balancer	is	instantiated.	Figure	6‑18:	Load	Balancing	VIP	IP@	in	Tier-1	Downlink	Subnet	–	Tier-1	Expanded	View	The	following	expanded	view,	where	the	Tier-1	SR	and	DR	are	represented	as	distinct	entities	and	hosted	physically	in	different	location	in	the	network,	clarifies	the	reason	why	source	LB-SNAT	is	mandatory:	Figure	6‑19:	Load	Balancing	VIP	IP@	in	Tier-1	Downlink	Subnet	–
Tier-1	Expanded	View	Traffic	from	server	to	client	would	be	switched	directly	by	the	Tier-1	DR	without	going	through	the	load-balancer	on	the	SR	if	source	LB-SNAT	was	not	configured.	This	design	is	not	in	fact	a	true	in-line	deployment	of	the	load-balancer	and	does	require	LB-SNAT.	6.3.5.2							One-arm	model	From	a	logical	standpoint,	the	VIP	of	a	virtual	server	belongs	to	the	subnet	of	the	downlink	of	the	Tier-1	gateway	associated	to	the	load-balancer.	The	following	diagram	represents	a	load-balancer	on	a	Tier-1	gateway	with	a	downlink	to	subnet
10.0.0/24.	The	Tier-1	gateway	interface	has	the	IP	address	10.0.0.1,	and	a	virtual	server	with	VIP	10.0.0.6	has	been	configured	on	the	load	balancer.	Figure	6‑20:		Load	Balancing	VIP	IP@	in	Tier-1	Downlink	Subnet	–	Logical	View	The	diagram	below	offers	a	possible	physical	representation	of	the	same	network,	where	the	Tier-1	gateway	is	broken	down	between	an	SR	on	an	Edge	Node,	and	a	DR	on	the	host	where	both	client	and	servers	are	instantiated	(note	that,	in	order	to	simplify	the	representation,	the	DR	on	the	Edge	was	omitted.)	Figure	6‑21:	Load
Balancing	VIP	IP@	in	Tier-1	Downlink	Subnet	–	Tier-1	Expanded	View	This	representation	makes	it	clear	that	because	the	VIP	is	not	physically	instantiated	on	the	DR,	even	if	it	belongs	to	the	subnet	of	the	downlink	of	the	Tier-1	gateway,	some	additional	“plumbing”	is	needed	in	order	to	make	sure	that	traffic	destined	to	the	load-balancer	reach	its	destination.	Thus,	NSX	configures	proxy-ARP	on	the	DR	to	answer	local	request	for	the	VIP	and	adds	a	static	route	for	the	VIP	pointing	to	the	SR	(represented	in	red	in	the	diagram.)	6.3.6					Load-balancing	combined
with	SR	services	(NAT	and	Firewall)	Since	NSX-T	2.4,	the	load-balancing	service	can	be	inserted	in	a	service	chain	along	with	NAT	and	centralized	firewall.	In	case	of	service	chaining,	the	order	is	NAT,	then	central	firewall,	at	last	load	balancing.	Figure	6‑22:		LB	+	NAT	+	FW	Services	Chaining	This	section	examines	the	technical	details	of	a	typical	NSX-T-based	enterprise	data	center	design.	It	looks	at	the	physical	infrastructure	and	requirements	and	discusses	the	design	considerations	for	specific	components	of	NSX-T.	Central	concepts	include:	●						
Connectivity	of	management	and	control	plane	components	(NSX-T	Manager.)	●							Design	for	connecting	the	compute	hosts	with	both	ESXi	and	KVM	hypervisors.	●							Design	for	the	NSX-T	Edge	and	Edge	clusters.	●							Organization	of	compute	domains	and	NSX-T	resources.	●							Review	of	sample	deployment	scenarios.	7.1						Physical	Infrastructure	of	the	Data	Center	An	important	characteristic	of	NSX-T	is	its	agnostic	view	of	physical	device	configuration,	allowing	for	great	flexibility	in	adopting	a	variety	of	underlay	fabrics	and	topologies.	Basic
physical	network	requirements	include:	●							IP	Connectivity	–	IP	connectivity	between	all	components	of	NSX-T	and	compute	hosts.	This	includes	management	interfaces	in	hosts	as	well	Edge	nodes	-	both	bare	metal	and	virtual	Edge	nodes.	●							Jumbo	Frame	Support	–	A	minimum	required	MTU	is	1600,	however	MTU	of	1700	bytes	is	recommended	to	address	the	full	possibility	of	variety	of	functions	and	future	proof	the	environment	for	an	expanding	Geneve	header.	As	the	recommended	MTU	for	the	NSX-T	is	9000,	the	underlay	network	should	support	at
least	this	value,	excluding	overhead.	●							The	VM	MTU	–	Typical	deployment	carries	1500	byte	MTU	for	the	guest	VM.	One	can	increase	the	MTU	up	to	8800	(a	ballpark	number	to	accommodate	bridging	and	future	header	expansion)	in	case	for	improving	the	throughput	of	the	VM.	However,	all	non-TCP	based	traffic	(UDP,	RTP,	ICMP	etc.)	and	traffic	that	need	to	traverse	firewall	or	services	appliance,	DMZ	or	Internet	may	not	work	properly	thus	it	is	advised	to	use	caution	while	changing	the	VM	MTU.	However,	replication	VMs,	backups	or	internal	only
application	can	certainly	benefit	from	increasing	MTU	size	on	VM.	(Note:	IP	protocol	behavior	is	to	drop	any	packets	with	the	DF	bit	set	upon	arriving	at	a	segment	with	a	lower	MTU	setting.		This	can	cause	the	aforementioned	connectivity	problems.	Once	above	requirements	are	met,	NSX	can	be	deployment	is	agnostic	to	variety	of	underlay	topology	and	configurations	viz:	●							In	any	type	of	physical	topology	–	core/aggregation/access,	leaf-spine,	etc.	●							On	any	switch	from	any	physical	switch	vendor,	including	legacy	switches.	●							With	any	underlying
technology.	IP	connectivity	can	be	achieved	over	an	end-to-end	layer	2	network	as	well	as	across	a	fully	routed	environment.	For	an	optimal	design	and	operation	of	NSX-T,	well	known	baseline	standards	are	applicable.	These	standards	include:	●							Device	availability	(e.g.,	host,	TOR,	rack	level)	●							TOR	bandwidth	-	both	host-to-TOR	and	TOR	uplinks	●							Fault	and	operational	domain	consistency	(e.g.,	localized	peering	of	Edge	node	to	northbound	network,	separation	of	host	compute	domains	etc.)	This	design	guide	assumes	that	best	practices	are	being
followed	such	that	(in	large	environments)	development	and/or	test	environments	are	separated	from	production	environments.		This	not	only	minimizes	the	effect	of	catastrophic	failure	in	one	environment	from	affecting	the	other,	but	also	provides	a	means	for	upgrading	an	environment	of	lesser	business	impact	with	new	code	versions	prior	to	upgrading	those	with	greater	production	impact.	The	tradeoffs	of	failure	domain	radius	and	expense	are	similar	to	those	in	legacy	infrastructure	and	beyond	the	scope	of	this	document.	This	design	guide	uses	the
example	of	a	routed	leaf-spine	architecture.	This	model	is	a	superset	of	other	network	topologies	and	fabric	configurations,	so	its	concepts	are	also	applicable	to	layer	2	and	non-leaf-spine	topologies	Figure	7‑1:	Typical	Enterprise	Design	displays	a	typical	enterprise	design	using	the	routed	leaf-spine	design	for	its	fabric.	A	layer	3	fabric	is	beneficial	as	it	is	simple	to	set	up	with	generic	routers	and	it	reduces	the	span	of	layer	2	domains	to	a	single	rack.	Figure	7‑1:	Typical	Enterprise	Design	A	layer	2	fabric	would	also	be	a	valid	option,	for	which	there	would	be	no
L2/L3	boundary	at	the	TOR	switch.	Multiple	compute	racks	are	configured	to	host	compute	hypervisors	(e.g.,	ESXi,	KVM)	for	the	application	VMs.	Compute	racks	typically	have	the	same	structure	and	the	same	rack	connectivity,	allowing	for	cookie-cutter	deployment.	Compute	clusters	are	placed	horizontally	between	racks	to	protect	against	rack	failures	or	loss	of	connectivity.	Several	racks	are	designed	to	the	infrastructure.	These	racks	host:	●							Management	elements	(e.g.,	vCenter,	NSX-T	Managers,	OpenStack,	vRNI,	etc.)	●							Bare	metal	Edge	or	Edge
node	VMs	●							Clustered	elements	are	spread	between	racks	to	be	resilient	to	rack	failures	The	different	components	involved	in	NSX-T	send	different	kinds	of	traffic	in	the	network;	these	are	typically	categorized	using	different	VLANs.	A	hypervisor	could	send	management,	storage,	and	vMotion	that	would	leverage	three	different	VLAN	tags.	Because	this	particular	physical	infrastructure	terminates	layer	3	at	the	TOR	switch,	the	span	of	all	VLANs	is	limited	to	a	single	rack.	The	management	VLAN	on	one	rack	is	not	the	same	broadcast	domain	as	the
management	VLAN	on	a	different	rack	as	they	lack	L2	connectivity.	In	order	to	simplify	the	configuration,	the	same	VLAN	ID	is	however	typically	assigned	consistently	across	rack	for	each	category	of	traffic.	Figure	7‑2:	Typical	Layer	3	Design	with	Example	of	VLAN/Subnet	details	an	example	of	VLAN	and	IP	subnet	assignment	across	racks.	Figure	7‑2:	Typical	Layer	3	Design	with	Example	of	VLAN/Subnet	Upcoming	examples	will	provide	more	detailed	recommendations	on	the	subnet	and	VLAN	assignment	based	on	the	NSX-T	component	specifics.	For
smaller	NSX	deployments,	these	elements	may	be	combined	into	a	reduced	number	of	racks	as	detailed	in	the	section	Multi-Compute	Workload	Domain	Design	Consideration..	7.2						NSX-T	Infrastructure	Component	Connectivity	NSX-T	Manager	Appliances	(bundling	manager	and	controller	functions)	are	mandatory	NSX-T	infrastructure	components.	Their	networking	requirement	is	basic	IP	connectivity	with	other	NSX-T	components	over	the	management	network.	The	details	of	these	communication	ports	are	listed	under	.	NSX-T	Manager	Appliances	are
typically	deployed	on	a	hypervisor	as	a	standard	VLAN	backed	port	group;	there	is	no	need	for	colocation	in	the	same	subnet	or	VLAN.	There	are	no	host	state	dependencies	or	MTU	encapsulation	requirements	as	these	components	send	only	management	and	control	plane	traffic	over	the	VLAN.	Figure	7‑3:	ESXi	Hypervisor	in	the	Management	Rack	shows	ESXi	hypervisors	in	the	management	rack	hosting	three	NSX-T	Manager	appliances.	Figure	7‑3:	ESXi	Hypervisor	in	the	Management	Rack	The	ESXi	management	hypervisors	are	configured	with	a	VDS/VSS
with	a	management	port	group	mapped	to	a	management	VLAN.	The	management	port	group	is	configured	with	two	uplinks	using	physical	NICs	“P1”	and	“P2”	attached	to	different	top	of	rack	switches.	The	uplink	teaming	policy	has	no	impact	on	NSX-T	Manager	operation,	so	it	can	be	based	on	existing	VSS/VDS	policy.	Figure	7‑4:	KVM	Hypervisors	in	the	Management	Rack	presents	the	same	NSX-T	Manager	appliance	VMs	running	on	KVM	hosts.	Figure	7‑4:	KVM	Hypervisors	in	the	Management	Rack	The	KVM	management	hypervisors	are	configured	on	a
Linux	bridge	with	two	uplinks	using	physical	NICs	“P1”	and	“P2”.	The	traffic	is	injected	into	a	management	VLAN	configured	in	the	physical	infrastructure.	Either	active/active	or	active/standby	is	fine	for	the	uplink	team	strategy	for	NSX-T	Manager	since	both	provide	redundancy;	this	example	uses	simplest	connectivity	model	with	active/standby	configuration.	In	a	typical	deployment,	the	NSX	management	components	should	be	deployed	on	a	VLAN.	This	is	the	recommended	best	practice.	The	target	compute	cluster	only	need	to	have	the	hypervisor	switch	–
VSS/VDS	on	ESXi	and	Linux	Bridge	on	KVM.	Deploying	NSX	management	components	on	the	software	defined	overlay	requires	elaborate	considerations	and	thus	beyond	the	scope	of	this	document.	7.2.1					NSX-T	Manager	Node	Availability	and	Hypervisor	interaction	The	NSX-T	Management	cluster	represents	a	scale-out	distributed	system	where	each	of	the	three	NSX-T	Manager	nodes	is	assigned	a	set	of	roles	that	define	the	type	of	tasks	that	node	can	implement.	For	optimal	operation,	it	is	critical	to	understand	the	availability	requirements	of
Management	cluster.	The	cluster	must	have	three	nodes	for	normal	operation;	however,	the	cluster	can	operate	with	reduced	capacity	in	the	event	of	a	single	node	failure.	To	be	fully	operational,	the	cluster	requires	that	a	majority	of	NSX-T	Manager	Nodes	(i.e.,	two	out	of	three)	be	available.	It	is	recommended	to	spread	the	deployment	of	the	NSX-T	Manager	Nodes	across	separate	hypervisors	to	ensure	that	the	failure	of	a	single	host	does	not	cause	the	loss	of	a	majority	of	the	cluster.	It	is	recommended	to	spread	the	deployment	of	the	NSX-T	Manager	Nodes
across	separate	failure	domains	to	ensure	that	a	single	failure	does	not	cause	the	loss	of	a	majority	of	the	cluster.	A	failure	domain	at	minimum	should	address	the	failure	of	a	single	host	and	may	extend	to	a	data	store,	vSphere	cluster,	or	even	cabinet	or	rack.	NSX	does	not	natively	enforce	this	design	practice.	On	a	vSphere-based	management	cluster,	deploy	the	NSX-T	Managers	in	the	same	vSphere	cluster	and	leverage	the	native	vSphere	Distributed	Resource	Scheduler	(DRS)	and	anti-affinity	rules	to	avoid	instantiating	more	than	one	NSX-T	nodes	on	the
same	ESXi	server.	For	more	information	on	how	to	create	a	VM-to-VM	anti-affinity	rule,	refer	to	the	VMware	documents	on	VM-to-VM	and	VM-to-host	rules.	For	a	vSphere-based	design,	it	is	recommended	to	leverage	vSphere	HA	functionality	to	ensure	single	NSX-T	Manager	node	can	recover	during	the	loss	of	a	hypervisor.	Furthermore,	NSX-T	Manager	should	be	installed	on	shared	storage.	vSphere	HA	requires	shared	storage	so	that	VMs	can	be	restarted	on	another	host	if	the	original	host	fails.	A	similar	mechanism	is	recommended	when	NSX-T	Manager	is
deployed	in	a	KVM	hypervisor	environment.	Additional	considerations	apply	for	management	Cluster	with	respect	to	storage	availability	and	IO	consistency.	A	failure	of	a	datastore	should	not	trigger	a	loss	of	Manager	Node	majority,	and	the	IO	access	must	not	be	oversubscribed	such	that	it	causes	unpredictable	latency	where	a	Manager	node	goes	into	read	only	mode	due	to	lack	of	write	access.	If	a	single	vSAN	data	store	is	being	used	to	host	NSX-T	Manager	cluster,	additional	steps	should	be	taken	to	reduce	the	probability	of	a	complete	data	store	failure
some	of	which	are	addressed	in	Physical	placement	considerations	for	the	NSX-T	Manager	Nodes	below.	It	is	also	recommended	to	reserve	resources	in	CPU	and	memory	according	to	their	respective	requirements.	Please	refer	to	the	following	links	for	details	NSX-T	Manager	Sizing	and	Requirements:	NSX-T	Manager	Cluster	Requirements	with	HA,	Latency	and	Multi-site:		7.2.2					Physical	placement	considerations	for	the	NSX-T	Manager	Nodes	The	NSX-T	Manager	Nodes	that	make	up	the	NSX-T	Management	Cluster	are	not	required	to	exist	in	a	single
vSphere	Cluster	or	even	under	a	single	vCenter	as	long	as	the	vCenter(s)	that	they	are	deployed	to	are	loaded	as	a	Compute	Manager	and	that	the	IP	Connectivity	Requirements	between	the	nodes	are	met.	Predominantly	however,	the	most	common	placement	of	the	NSX-T	Manager	Nodes	is	into	a	single	vSphere	cluster	and	in	some	cases,	they	may	be	spread	across	three	vSphere	clusters	based	on	a	number	of	factors	relating	to	availability.	Single	vSphere	Cluster	for	all	NSX-T	Manager	Nodes	in	a	Manager	Cluster	When	all	NSX-T	Manager	Nodes	are
deployed	into	a	single	vSphere	cluster	it	is	important	to	design	that	cluster	to	meet	the	needs	of	the	NSX-T	Managers	with	at	least	the	following:	At	least	4	vSphere	Hosts.	This	is	to	adhere	with	best	practices	around	vSphere	HA	and	vSphere	Dynamic	Resource	Scheduling	(DRS)	as	well	as	allowing	all	three	NSX	Manager	Nodes	to	remain	available	during	proactive	maintenance	or	a	failure	scenario.	The	hosts	should	all	have	access	to	the	same	data	stores	hosting	the	NSX-T	Manager	Nodes	to	enable	both	DRS	and	vSphere	HA	Each	NSX-T	Manager	Node	should
be	deployed	onto	a	different	data	store	(this	is	supported	as	a	VMFS,	NFS,	or	other	data	store	technology	supported	by	vSphere)	DRS	Anti-Affinity	rules	should	be	put	in	place	to	prevent	whenever	possible	two	Edge	Node	VMs	from	running	on	the	same	host.	During	lifecycle	events	of	this	cluster,	each	node	should	be	independently	put	into	maintenance	mode	moving	any	running	NSX-T	Manager	Node	off	of	the	host	prior	to	maintenance	or	any	NSX-T	Manager	Node	should	be	manually	moved	to	a	different	host.	If	possible,	a	rack	level	or	critical	infrastructure
(e.g.	Power,	HVAC,	ToRs)	should	also	be	taken	into	account	to	protect	this	cluster	from	any	single	failure	event	taking	down	the	entire	cluster	at	once.	In	many	cases	this	means	spreading	this	cluster	across	multiple	cabinets	or	racks	and	therefore	connecting	the	hosts	in	it	to	a	diverse	set	of	physical	switches	etc.	NSX-T	Manager	backups	should	be	configured	and	pointed	to	a	location	that	is	running	outside	of	the	vSphere	Cluster	that	the	NSX	Manager	Nodes	are	deployed	on.	Figure	7‑5:	Single	vSphere	Cluster	1:1	Data	Store	Single	vSphere	Cluster	when
leveraging	VSAN	as	the	storage	technology	When	all	NSX-T	Manager	Nodes	are	deployed	into	a	single	vSphere	cluster	where	VSAN	is	the	storage	technology	in	use	there	are	additional	steps	that	should	be	taken	to	protect	the	NSX	Manager	Cluster’s	availability	since	only	a	single	data	store	will	be	presented.	VSAN	as	a	part	of	a	HyperConverged	Infrastructure	solution	ties	together	the	Compute,	Memory,	and	Storage	resources	on	a	host	along	with	ESXi	as	the	hypervisor	to	present	a	single	scale-out	unit	of	infrastructure	for	hosting	Virtual	Machines,
Containers,	or	even	now	network	attached	storage	type	objects	as	a	single	pool	across	the	cluster.	The	availability	of	the	resources	associated	with	storage	are	governed	by	a	few	specific	parameters	including,	Primary	Levels	of	Failures	to	Tolerate	(PFTT),	Secondary	Levels	of	Failures	to	Tolerate	(SFTT),	and	Failure	Tolerance	Mode	(FTM)	(when	only	a	single	site	in	VSAN	is	configured,	PFTT	is	set	to	0	and	SFTT	is	usually	referred	to	as	just	FTT).	VSAN	with	each	of	these	settings	allows	the	administrator	to	tightly	control	the	availability	of	the	objects	stored	on
each	VSAN	data	store	however,	in	order	to	increase	the	availability	of	the	objects	hosted	on	a	VSAN	data	store,	scaling	out	the	number	of	hosts	that	participate	in	that	data	store	and	in	turn	the	vSphere	Cluster	is	usually	required.	When	hosting	all	of	the	NSX	Manager	Nodes	in	an	NSX	Manager	Cluster	in	a	single	vSphere	Cluster	which	has	only	a	single	VSAN	data	store,	the	following	configurations	should	be	made	to	improve	the	availability	of	the	NSX-T	Management	and	Control	Planes:	At	a	minimum,	the	vSphere	Cluster	should	be	configured	with	an	FTT
setting	of	at	least	2	and	an	FTM	of	Raid1	This	will	dictate	that	for	each	object	associated	with	the	NSX-T	Manager	Node,	a	witness,	two	copies	of	the	data	(or	component)	are	available	even	if	two	failures	occur,	allowing	the	objects	to	remain	in	a	healthy	state.	This	will	accommodate	both	a	maintenance	event	and	an	outage	occurring	without	impacting	the	integrity	of	the	data	on	the	datastore.	This	configuration	requires	at	least	five	(5)	hosts	in	the	vSphere	Cluster.	ToR	and	Cabinet	Level	Failures	can	be	accommodated	as	well,	this	can	be	accomplished	in
multiple	ways;	either	through	leveraging	VSAN’s	PFTT	capability	commonly	referred	to	as	Failure	Domains	or	VSAN	Stretched	Clusters	and	leveraging	a	Witness	VM	running	in	a	third	failure	domain	or	by	distributing	the	cluster	horizontally	across	multiple	cabinets	where	no	more	hosts	exist	in	each	Rack	or	Cabinet	than	the	number	of	failures	that	can	be	tolerated	(a	maximum	of	FTT=3	is	supported	by	VSAN).	In	both	of	these	scenarios,	NSX-T	Manager	Nodes	will	be	spread	out	across	multiple	cabinets	which	will	also	require	IP	mobility	of	the	IP	Addresses
used	by	the	NSX	Manager	Appliances.	When	workload	is	spread	across	multiple	cabinets	or	ToRs,	it	is	also	important	to	potentially	set	Host	affinities	for	workloads	to	better	disburse	the	NSX	Manager	Nodes	across	the	cabinets	and	have	predictability	for	which	one	is	running	where.	In	either	of	the	first	two	scenarios,	it	is	strongly	recommended	that	Hosts	any	time	they	are	proactively	removed	from	service,	that	they	vacate	the	storage	and	repopulate	the	objects	on	the	remaining	hosts	in	the	vSphere	Cluster.	Figure	7‑6:	Single	vSphere	Cluster	Single	VSAN
Data	Store	Placement	of	NSX	Manager	Nodes	Across	Multiple	vSphere	Clusters	Depending	on	the	design	of	the	underlying	infrastructure,	it	may	become	necessary	or	advantageous	to	place	the	three	NSX	Manager	Nodes	across	multiple	vSphere	Clusters.	This	type	of	design	tends	to	become	apparent	when	a	single	vSphere	cluster	is	unable	to	provide	the	resiliency	or	availability	for	all	failure	scenarios	that	are	required	to	be	addressed.	This	can	occur	for	instance	if	physical	infrastructure	is	preferred	to	be	deployed	across	multiple	facilities	or	computer
rooms,	or	if	storage	or	other	underlying	infrastructure	is	required	to	be	diverse.	In	this	scenario:	Each	vCenter	that	is	hosting	an	NSX	Manager	Node	must	be	added	as	a	Compute	Manager	inside	of	the	first	NSX	Manager	that	is	deployed.	If	the	same	IP	space	is	not	available	to	each	vSphere	Cluster,	IP	Addresses	in	different	subnets	will	need	to	be	used	as	well	as	a	load	balancer	as	explained	in	section	7.2.3	below.	If	VSAN	is	used	as	part	of	this	design,	it	is	recommended	to	avoid	using	HCI	Mesh	and	use	the	local	VSAN	data	store	presented	to	each	vSphere
Cluster	for	the	NSX	Manager	Node	that	is	running	in	it.	It	is	still	recommended	that	each	vSphere	Cluster	hosting	an	NSX	Manager	Node	adhere	to	the	vSphere	best	practices	for	both	VMware	DRS	and	HA	for	sizing	and	have	at	least	4	hosts.	Figure	7‑7:	3x	vSphere	Clusters	Each	in	a	Different	Infrastructure	Failure	Domain	7.2.3					Deployment	Options	for	NSX-T	Management	Cluster	Figure	7‑8:	NSX	Manager	Appliances	with	Combined	Role	Figure	7‑8:	NSX	Manager	Appliances	with	Combined	Role	shows	the	manager	component,	the	central	control
component,	and	the	policy	component	in	an	NSX	Manager	appliance.	Three	appliances	form	a	cluster.	The	database	is	replicated	to	all	the	nodes	in	the	cluster,	so	there	is	a	single	database	cluster	instance.	The	three	hosts	depicted	in	this	figure	are	not	required	to	be	part	of	the	same	vSphere	cluster.	The	benefit	of	clustering	is	that	it	provides	high	availability	of	all	management	services	such	as	UI	and	API	access	to	the	cluster.	Combining	the	NSX-T	Manager,	policy,	and	central	controller	reduces	the	number	of	appliances	deployed	and	allows	greater
flexibility	with	availability	models	as	discussed	later	in	this	section.	Once	the	cluster	is	formed,	the	cluster	manager	creates	a	single	database	which	is	the	datastore	service.	It	then	creates	the	control	plane	by	putting	all	the	controllers	into	a	controller	group.	Finally,	it	creates	the	manage	plane	by	putting	the	managers	into	the	manager	group.	Similarly,	it	creates	other	service	groups	as	needed.		The	workload	is	distributed	and	shared	in	the	service	group.	Consumption	Methods	for	NSX-T	Manager	Appliance	and	Communication	NSX-T	Manager	appliance
serves	two	critical	areas	of	consumption.	The	first	one	is	the	external	systems	and	user	access.	Many	different	end	points	(such	as	HTTP,	vRA,	Terraform,	Network	Container	Plugin,	custom	automation	modules)	can	consume	NSX-T	Manager	from	northbound	via	an	IP	address.		It’s	is	a	single	point	of	entry	(using	RESTful	API	-	GUI	internally	makes	and	API	call).	Second	is	communication	to	NSX-T	components	(controllers	and	transport	node).		The	controller	communication	to	transport	node	is	done	via	controller	role	(element)	within	the	NSX-T	appliance	node.
The	controller	communication	to	NSX-T	components	were	described	chapter	2.		The	controller	availability	models	remain	majority	based	requiring	all	three	nodes	to	be	available	for	normal	operations.	However,	starting	with	NSX-T	2.4	release,	the	NSX-T	Manager	role	has	multiple	availability	models.	The	rest	of	the	section	discusses	the	NSX-T	Manager	role	configuration	and	availability	options.	There	are	three	different	configuration	modes	available	for	northbound	access	to	the	NSX-T	Manager	cluster.							Default	deployment	(each	node	uniquely
addressable,	no	common	IP	address)							Cluster	VIP	based	deployment							External	Load	Balancer	based	deployment	Default	Deployment	The	default	(and	the	simplest	option,	with	the	least	number	of	IP	addresses	consumed)	is	to	deploy	a	3-node	cluster	without	any	additional	configuration.	With	this	option,	each	node	is	accessible	via	distinct	IP	address	(or	FQDN)	and	thus	multiple	endpoints	(user	and	automation	systems)	can	access	each	different	node	to	build	redundancy	and	load	balancing	model	for	NSX-T	Manager	role.	Here	the	availability	is	driven	via
external	system	choosing	different	IP	address	(FQDN).	However,	in	case	of	the	node	failure	the	system	using	that	node	must	externally	intervene	to	point	to	another	available	node.		For	an	example,	if	vRA	or	API	script	uses	the	FQDN	of	node	A,	in	case	node	A	fails,	there	has	to	be	some	manual	intervention	to	make	the	script	continues	to	work,	either	you	change	the	FQDN	in	your	API	script,	or	update	the	FQDN	entry	in	the	DNS.	In	this	configuration,	using	round	robin	DNS	will	result	in	intermittent	connectivity	in	a	failure	scenario.	But	in	terms	of	topology
requirement,	as	long	as	there	is	IP	connectivity	between	all	the	nodes,	this	mode	will	work.		Cluster	VIP	based	deployment	The	second	deployment	option	is	based	on	simple	active/standbys	redundancy	model,	in	which	one	has	to	configure	a	virtual	IP	address	on	the	management	cluster.	Cluster	VIP	configuration	option	provide	node	level	redundancy	through	the	virtual	IP	address	on	the	cluster	itself.	This	virtual	IP	(like	VRRP/HSRP)	provides	redundancy	of	accessing	the	cluster	via	single	FQDN.	In	other	words:	the	entire	northbound	access	to	the	NSX-T
Manager	is	available	via	this	FQDN	(or	IP).	Since	it	is	a	single	FQDN	name	available	to	all	end	points,	all	the	GUI	and	API	requests	are	accessed	through	single	node	owning	the	VIP	as	shown	in	Figure	7‑9:	NSX	Manager	Appliances	Availability	with	Cluster	VIP.	Essentially,	it	is	a	simple	availability	model,	which	is	far	better	default	option	where	external	intervention	is	not	required,	and	availability	of	NSX-T	Manager	role	is	improved	from	external	restore	option	to	full	in-line	availability	which	did	not	exist	in	previous	releases.	Cluster	virtual	IP	address	is	an	IP
address	floating	among	the	cluster	nodes.		One	of	the	cluster	nodes	is	assigned	as	the	owner	of	the	cluster	VIP.	If	case	of	failure,	a	new	owner	will	be	assigned	by	the	system.	Since	the	cluster	VIP	must	remain	the	same,	it	assumes	that	other	nodes	are	available	in	in	the	same	subnet	as	the	cluster	VIP	feature	uses	gratuitous	ARP	to	update	the	mac-address	and	the	ARP	table.	Thus,	it	is	mandatory	to	have	all	nodes	in	the	cluster	must	be	in	the	same	subnet	for	the	VIP	to	work.		From	the	physical	topology	perspective,	the	nodes	placement	can	vary.	For	the	L2
topology	the	nodes	can	be	in	different	rack	or	the	same	as	long	they	have	L2	adjacency.	For	the	L3	topology	all	nodes	must	be	in	the	same	rack	assuming	VLAN/subnet	is	confined	to	a	rack.	Alternatively,	one	can	cross-connect	the	host	to	two	distinct	ToRs	on	two	different	rack	to	be	rack	resilient.	Figure	7‑9:	NSX	Manager	Appliances	Availability	with	Cluster	VIP	The	NSX-T	Manager	availability	has	improved	by	an	order	of	the	magnitude	from	a	previous	option;	however,	it	is	important	to	clear	the	distinction	between	node	availability	vs	load-balancing.	In	the
case	of	cluster	VIP	all	the	API	and	GUI	requests	go	to	one	single	node,	one	cannot	achieve	a	load-balancing	of	GUI	and	API	sessions.	In	addition,	the	existing	sessions	established	on	a	failed	node,	will	need	to	re-authenticated	and	re-established	at	new	owner	of	the	cluster	VIP.		The	availability	is	also	designed	to	leverage	critical	failure	of	certain	services	relevant	to	NSX-T	Manager,	thus	one	cannot	guarantee	failure	in	certain	corner	cases.	The	communication	from	northbound	is	via	cluster	VIP	while	the	communication	among	the	cluster	nodes	and	to	other
transport	node	is	done	via	IP	address	assigned	to	each	manager	node.	The	cluster	VIP	is	the	preferred	and	recommended	option	for	achieving	high	availability	with	NSX-T	Manager	appliance	nodes.	External	Load	Balancer	based	deployment	The	third	deployment	option	is	to	keep	the	same	configuration	as	the	first	option	but	adding	an	external	load	balancer.	A	VIP	on	the	load	balancer	will	represent	the	manager	nodes	as	the	physical	servers	in	the	server	pool.	Then	the	UI	and	API	access	to	the	management	cluster	will	go	through	the	VIP	on	the	load	balancer.
The	advantage	of	this	option	is	that	not	only	the	endpoint	access	the	NSX-T	Manager	nodes	will	have	load-balancing	but	also	the	cluster	management	access	is	highly	available	via	a	single	IP	address.	The	external	load-balancer	option	also	makes	the	deployment	of	NSX-T	manger	nodes	independent	of	underlying	physical	topology	(agnostic	to	L2	or	L3	topology).	Additionally,	one	can	distribute	nodes	to	more	than	one	rack	to	achieve	rack	redundancy	(in	L2	topology	it	is	the	same	subnet	but	different	rack,	while	in	L3	topology	it	will	be	distinct	subnet	per	rack).
The	downside	of	this	option	is	that	it	requires	an	external	load	balancer	and	configuration	complexity	based	on	load-balancer	models.	The	make	and	model	of	load-balancer	are	left	to	user	preference	however	one	can	also	use	NSX-T	native	load	balancer	included	as	part	of	the	system	or	standalone	NSX-T	Advanced	load	balancer	(formally	AVI	network)	offered	as	a	part	of	NSX-T	Datacenter	portfolio	Figure	7‑10:	NSX	Manager	Appliances	with	External	Load	Balancer	Figure	7‑10:	NSX	Manager	Appliances	with	External	Load	Balancer	shows	simple	source	IP
load	balancing	choice	with	external	load	balancer.	In	this	option	only	the	northbound	endpoints	with	different	source	IP	will	be	load-balanced	among	the	available	manager	appliance	nodes.	NSX-T	Manager	can	be	authenticated	via	four	ways	-	HTML	basic	authentication,	client	certificate	authentication,	vIDM	and	session.	The	API	based	client	can	use	all	four	forms	of	authentication	while	web	browsers	use	session-based	authentication.	The	session-based	authentication	typically	requires	LB	persistence	configuration	while	API	based	access	does	not	mandate
that.		It	is	for	this	reason	above	Figure	7‑10:	NSX	Manager	Appliances	with	External	Load	Balancer	represent	VIP	with	LB	persistent	configuration	for	both	browser	(GUI)	and	API	based	access.	While	one	can	conceive	advanced	load-balancing	schema	in	which	dedicated	VIP	for	browser	access	with	LB	persistent	while	other	VIP	without	LB	persistence	for	API	access.	However,	this	option	may	have	limited	value	in	terms	of	scale	and	performance	differentiation	while	complicating	the	access	to	the	system.		It	is	for	this	reason	it	is	highly	recommended	to	first
adopt	basic	option	of	LB	persistence	with	single	VIP	for	all	access.		Overall	recommendation	still	to	start	with	cluster	VIP	and	move	to	external	LB	if	real	need	persist.	7.3							Compute	Cluster	Design	(ESXi/KVM)	This	section	covers	both	ESXi	and	KVM	compute	hypervisors;	discussions	and	recommendations	apply	to	both	types	unless	otherwise	clearly	specified.	Compute	hypervisors	host	the	application	VMs	in	the	data	center.	In	a	typical	enterprise	design,	they	will	carry	at	least	two	kinds	of	traffic,	typically	on	different	VLANs	–	management	and	overlay.
Because	overlay	traffic	is	involved,	the	uplinks	are	subjects	to	the	MTU	Requirements		mentioned	earlier.	Additionally,	based	on	type	of	hypervisor,	compute	hosts	may	carry	additional	type	of	infrastructure	traffic	like	storage	(VSAN,	NFS	and	iSCSI),	vMotion,	high	availability	etc.	The	ESXi	hypervisor	defines	specific	VMkernel	interfaces,	typically	connected	to	separate	VLANs,	for	this	infrastructure	traffic.	Similarly,	for	the	KVM	hypervisor,	specific	interfaces	and	VLANs	are	required.	Details	on	specific	hypervisor	requirements	and	capabilities	can	found	in
documentation	from	their	respective	vendors.	A	specific	note	for	the	KVM	compute	hypervisor:	NSX	uses	a	single	IP	stack	for	management	and	overlay	traffic	on	KVM	hosts.	Because	of	this,	both	management	and	overlay	interfaces	share	the	same	routing	table	and	default	gateway.	This	can	be	an	issue	if	those	two	kinds	of	traffic	are	sent	on	different	VLANs	as	the	same	default	gateway	cannot	exist	on	two	different	VLANs.	In	this	case,	it	is	necessary	to	introduce	more	specific	static	routes	for	the	overlay	remote	networks	pointing	to	a	next	hop	gateway	specific
to	the	overlay	traffic.	Generalized	Traffic	Engineering	and	Capability	with	NSX	NSX-T	offers	choices	with	management	of	infrastructure	and	guest	VM	traffic	(overlay	or	VLAN)	through	flexibility	of	uplink	profiles	and	teaming	type	as	described	in	chapter	3.	This	chapter	utilizes	configuration	choices	and	capability	based	on	requirements	and	best	practices	prevalent	in	existing	data-center	deployments.			Typically,	traffic	management	carries	two	overarching	goals	while	expecting	availability,	namely:	Optimization	of	all	available	physical	NICs–	In	this	choice,	all
traffic	types	share	all	available	pNICs.	Assumption	is	made	that	by	providing	all	pNICs	to	all	traffic,	one	can	avoid	traffic	hot	spot	during	peak/burst	and	probability	of	contention	is	reduced	due	to	number	of	links	and	speed	offered.	This	type	of	traffic	management	typically	suitable	with	25	Gbps	or	greater	speed	links.		In	the	case	of	lower	speed	pNIC,	it	may	be	necessary	to	enable	traffic	management	tools	such	as	NIOC	to	build	an	assurance	for	a	traffic	type.	One	example	of	such	traffic	is	VSAN	traffic.		The	type	of	teaming	type	offered	in	NSX-T	that	enables
this	behavior	is	called	“Load	Balanced	Source	Teaming”	Deterministic	Traffic	per	pNIC–	In	this	choice,	certain	traffic	type	is	only	carried	on	a	specific	pNIC	thus	allowing	dedicated	bandwidth	for	a	given	traffic	type.	Additionally,	it	allows	deterministic	failure	as	one	or	more	links	could	be	only	be	in	standby	mode.		Based	on	number	of	pNICs,	one	can	design	a	traffic	management	schema	that	avoid	contention	of	two	high	bandwidth	flows	(e.g.	VSAN	vs	vMotion)	and	highly	interactive	traffic	such	as	transactional	and	web.		The	teaming	type	offered	in	NSX-T	that
enables	this	behavior	is	called	“Failover	Order”.	One	can	build	a	failover	teaming	mode	with	only	one	pNIC	or	more.	When	a	single	pNIC	is	used,	by	design,	its	failure	is	not	covered	by	a	standby	pNIC	but	by	some	other	redundancy	mechanism.	An	additional	place	where	Deterministic	Traffic	per	pNIC	may	be	leveraged	is	in	the	case	of	multiple	distinct	physical	networks	e.g.	DMZ,	Storage,	or	Backup	Networks	where	the	physical	underlay	differs	based	on	pNIC.	Additionally,	one	can	design	a	traffic	management	schema	that	utilize	both	above	principles.		This
design	guide	leverages	both	type	of	principle	based	on	specific	requirements	and	makes	generalized	recommendations.	7.3.1					Running	a	VDS	prepared	for	NSX	on	ESXi	hosts	NSX-T	3.0	introduces	the	capability	of	running	NSX	directly	on	the	top	of	a	VDS	(with	VDS	version	7.0	or	later.)	This	short	section	introduces	the	reasons	for	this	feature,	its	impact	on	ESXi	host	design	with	NSX	and	some	guidelines	for	moving	to	this	new	model.	7.3.1.1							NSX	on	VDS	Simpler	install	The	N-VDS	introduced	on	the	ESXi	platform	is	very	close	to	the	VDS.	In	fact,	the
name	“N-VDS”	was	chosen	to	highlight	this	tight	relationship.	Still,	the	N-VDS	is	an	opaque	switch	(an	opaque	switch	and	an	opaque	network	means	it’s	not	instantiated	via	vCenter	and	does	not	have	any	object	existence	native	to	vCenter)	that	needs	to	be	instantiated	separately,	or	migrated	to,	when	the	user	wants	to	start	using	NSX	on	ESXi.	The	capability	of	running	NSX	directly	on	the	top	of	an	existing	VDS	removes	this	burden	and	makes	the	deployment	and	adoption	of	NSX	must	simpler.	This	is	especially	critical	with	the	two	pNICs	design	and/or	fully
collapsed	design	where	management,	edge	and	applications	VMs	co-exist	on	the	same	hypervisor.	There	is	no	need	for	migration	of	VMkernel	interfaces	and	specific	considerations	for	security	and	availability.	Compatibility	with	third	party	solutions	With	the	N-VDS,	NSX	segments	appeared	as	opaque	network	in	vCenter.	Even	if	opaque	networks	have	been	available	in	vCenter	for	almost	a	decade,	way	before	NSX-T	was	developed,	many	third-party	solutions	still	don’t	take	this	network	type	into	account	and,	as	a	result,	fail	with	NSX-T.	When	running	NSX	on
VDS,	NSX	segments	are	represented	as	DVPGs	(now	onward	called	NSX	DVPG)	in	vCenter.	Third	party	scripts	that	had	not	been	retrofitted	for	opaque	networks	can	now	work	natively	with	NSX.	7.3.1.2							Impact	on	ESXi	host	design	As	we	have	seen	earlier	in	this	chapter,	the	traffic	in/out	an	ESXi	host	can	be	classified	in	two	broad	categories:	Infrastructure	traffic.	Any	traffic	that	is	originating	from	the	ESXi	host	and	its	functionality	to	support	application,	storage,	availability	and	management.	This	traffic	is	typically	initiated	and	received	on	VMkernel
interfaces	defined	on	the	host	and	includes	traffic	for	management,	vMotion,	storage,	high	availability	etc.	VM	and/or	application	traffic:	This	is	the	traffic	between	virtual	machines	running	on	the	host.	This	traffic	might	be	local	to	the	hypervisor	but	can	also	extend	to	VMs	on	remote	hosts.	NSX	is	all	about	providing	advanced	networking	and	security	features	for	VM	traffic.	Until	now,	when	the	administrator	introduced	NSX,	they	needed	to	deploy	a	new	N-VDS	virtual	switch	on	their	hosts.	The	ESXi	platform	can	run	multiple	separate	virtual	switches
(VSS/VDS/N-VDS)	side-by-side	with	no	problem,	however,	those	virtual	switches	cannot	share	physical	uplinks.	The	administrator	is	thus	left	with	two	main	options:	Deploy	an	N-VDS	for	VM	traffic	along	with	the	existing	virtual	switch	(VSS/VDS)	handling	infrastructure	traffic.	This	solution	is	very	easy	to	deploy	as	it	does	not	impact	the	current	host	operations.	However,	it	requires	separate	uplinks	for	the	N-VDS,	meaning	additional	connectivity	to	the	physical	infrastructure.	The	second,	an	efficient	option	is	to	consolidate	both	infrastructure	and	VM	traffic	on
a	single	N-VDS.	Deploying	this	model	is	more	complex	as	it	implies	a	virtual	switch	migration:	VMKernel	interfaces	and	physical	uplinks	need	to	be	moved	from	VSS/VDS	to	the	N-VDS.	When	the	hosts	only	have	two	high-speed	uplinks,	which	is	increasingly	the	case	with	modern	servers,	migrating	to	a	single	N-VDS	becomes	mandatory	to	maintain	uplink	redundancy	for	the	virtual	switch.	Because	of	those	considerations,	the	NSX	design	guide	traditionally	addresses	a	4	(or	more)	pNICs	design,	corresponding	to	the	first	option,	and	a	two	pNIC	design	for	the
second.	The	introduction	of	NSX	on	VDS	changes	all	this.	NSX	can	be	installed	on	a	VDS	without	incurring	migration	of	infrastructure	traffic	VMkernel,	making	the	second	option	just	as	simple	as	the	first	one.	The	next	sections,	showing	the	ESXi	compute	node	design	options,	will	thus	focus	on	installing	NSX	on	VDS	in	a	two	pNIC	scenario.	This	scenario	will	in	fact	be	unchanged	if	there	are	more	than	two	pNICs	on	the	host.	The	use-cases	will	still	cover	a	four	pNICs	design,	for	those	who	plan	on	keeping	the	N-VDS	for	now,	and	for	the	cases	when	multiple
virtual	switches	are	a	requirement	for	other	reasons.	7.3.1.3							When	to	run	NSX	on	VDS	As	mentioned	earlier,	in	order	to	run	NSX	on	VDS,	you	need	NSX-T	3.0	or	later	and	a	VDS	version	7.0	or	later.	For	a	greenfield	deployment	that	meet	those	requirements,	we	recommend	starting	with	NSX	on	VDS.	This	is	the	simpler	approach	and	in	future	N-VDS	shall	converge	on	the	VDS.	VMkernel	should	remain	on	DVPG	with	VDS	with	NSX	For	those	already	running	NSX	on	N-VDS,	or	for	those	with	a	new	install	that	cannot	meet	the	version	requirements,	the
recommendation	is	to	stay	on	N-VDS	for	now.	The	N-VDS	remains	fully	supported.	In	this	case	one	must	migrate	and	keep	VMkernel	on	NSX	unless	one	has	4	pNICs	configurations	There	is	almost	no	functionality	difference	between	N-VDS	and	VDS	with	NSX.	In	fact,	one	could	even	mix	VDS	and	N-VDS	in	the	same	NSX	network.	For	a	given	compute	cluster	do	not	mix	and	match	the	NSX	virtual	switch	type.	For	a	given	host	with	more	than	2	pNICs,	coexistence	of	all	NSX	virtual	switch	(not	the	third	party)	allowed	except	N-VDS	and	VDS	with	NSX	in	the	same
host.		One	can	introduce	new	compute	cluster	or	vCenter	within	the	brownfield	deployment,	for	which	the	recommendation	is	to	deploy	VDS	with	NSX	with	properly	supported	software	on	compute	and	NSX.	In	this	case	VMkernel	can	remain	on	DVPG.	The	goal	is	to	eventually	convert	every	NSX	deployment	to	the	VDS	model.	Future	conversion	tool	will	automate	this	conversion	and	make	it	straightforward.	One	can	also	migrate	their	current	N-VDS	deployment	into	a	VDS	one	right	now.	However,	the	recommendation	is	to	wait	for	the	conversion	tool	as	a
manual	migration	would	be	unnecessarily	complex.	7.3.1.4							NSX	on	VDS	and	Interaction	with	vSphere	&	Other	Compute	Domains	The	relationship	and	representative	difference	between	N-VDS	vs	NSX	on	VDS	is	subtle	and	requires	consideration	in	designing	the	cluster	and	operational	understanding.	The	N-VDS	has	a	complete	independence	to	underlying	compute	manager	(vSphere	or	any	other	compute	domains	like	or	in	cloud	like	AWS,	Azure	or	Google	Cloud).		Unlike	deployment	of	VDS	via	vCenter,	N-VDS	deployment	is	managed	via	NSX	manager.
Because	of	this	decoupling	it	allows	consistent	connectivity	and	security	with	multiple	compute	domains.	This	consistent	connectivity	is	shown	in	below	Figure	7‑11:	N-VDS	vs.	VDS	with	NSX	–	Representation	first	part	with	N-VDS	and	its	relation	to	vCenter.		With	NSX-T	3.0,	the	NSX-T	can	be	enabled	on	traditional	VDS	allowing	same	level	of	flexibility,	however	now	there	is	a	mandatory	requirement	of	having	vCenter	to	instantiate	a	VDS.	This	capability	when	enabled,	depicted	in	below	Figure	7‑11:	N-VDS	vs.	VDS	with	NSX	–	Representation	center	part	as	a
NSX	DVPG.	The	center	part	of	the	figure	below	depicts	a	case	of	single	VDS	with	NSX	which	is	logically	similar	to	first	one,	where	only	difference	is	representation	in	vCenter	-	opaque	vs	NSX	DVPG.	The	third	part	of	the	figure	represent	multiple	VDS.	This	is	possible	either	with	single	vCenter	with	each	cluster	having	dedicated	VDS	or	with	multiple	vCenters	with	VDS.	In	this	later	case	of	multiple	VDSs,	the	same	segment	of	NSX	is	represented	via	unique	NSX	DVPG	under	each	VDS	or	vCenters.	This	might	represent	a	challenge	operationally	identifying	VM
connectivity	to	VDS	and	the	automation	that	relies	on	the	underlying	assumption;	however,	future	releases	shall	make	this	identification	easier	with	unique	names.		Typically,	it	is	a	good	practice	to	invoke	a	single	VDS	per	compute	domain	and	thus	have	a	consistent	view	and	operational	consistency	of	the	VM	connectivity.	However,	there	are	cases	where	single	VDS	invocation	may	not	be	ideal	from	separation	of	workload	for	security,	automation,	storage	policy,	NIOC	control	and	provisioning	boundary.	Thus,	it	is	acceptable	to	have	a	multiple	VDS	per	given
vCenter.				Figure	7‑11:	N-VDS	vs.	VDS	with	NSX	–	Representation	The	details	of	these	differences	and	additional	considerations	are	documented	with	following	KB	articles	Co-existence	with	existing	NSX,	KVM	and	New	vSphere	Clusters	In	practical	deployment,	where	one	has	existing	NSX-T	deployed	with	N-VDS	(ESXi)	or	OVS	(KVM).	The	core	realization	of	consistent	networking	and	security	does	not	change	with	advent	of	VDS	with	NSX.	The	Figure	7‑12:	Multi-domain	compute	co-existence	describe	such	configuration.	Of	course,	for	the	VDS	with	NSX
based	cluster	requires	appropriate	vSphere	and	ESXi	version	and	NSXDVPG	port	for	a	VM	connectivity.	Figure	7‑12:	Multi-domain	compute	co-existence	The	key	concept	here	is	that	NSX	abstract	the	connectivity	and	security	via	segment.	This	segment	is	represented	via	various	realization	like	NSX	DVPG	in	VDS	with	NSX,	Port-NSX-T	in	KVM	or	an	opaque	network	in	N-VDS.	Regardless	of	the	underlying	switch	DFW	can	be	realized	either	on	VLAN	or	overlay	however	only	with	NSX	DVPG	and	not	via	vSphere	DVPG.	7.3.2					ESXi-Based	Compute	Hypervisor
with	two	pNICs	This	section	targets	typical	enterprises	deployments	deploying	compute	hypervisors	with	the	following	parameters:	Two	pNICs	All	host	traffic	(VM	and	infrastructure	traffic)	shares	the	common	NICs	Each	host	traffic	type	has	a	dedicated	IP	subnet	and	VLAN	The	teaming	mode	offers	a	choice	in	the	availability	and	traffic	load-sharing	design.	NSX	offers	two	types	of	teaming	mode	design	for	the	ESXi	hypervisor	–	failover	order	and	load	balanced	source.	In	this	section	only	a	two-pNIC	design	is	shown,	however	base	design	principle	remains	the
same	for	more	than	two	pNICs.	7.3.2.1							Failover	Order	Teaming	Mode	Figure	7‑13:	ESXi	Compute	Rack	Failover	Order	Teaming	with	One	Teaming	Policy	In	Figure	7‑13:	ESXi	Compute	Rack	Failover	Order	Teaming	with	One	Teaming	Policy,	a	single	virtual	VDS	or	N-VDS	is	used	with	a	2	pNICs	design	and	carries	both	infrastructure	and	VM	traffic.		Physical	NICs	“P1”	and	“P2”	are	attached	to	different	top	of	rack	switches.	The	teaming	policy	selected	is	failover	order	active/standby;	“Uplink1”	is	active	while	“Uplink2”	is	standby.	If	the	virtual	switch	is	an	N-
VDS,	all	traffic	on	the	host	is	carried	by	NSX	segments	(VLAN	or	overlay)	and	the	redundancy	model	can	be	achieved	with	a	single	default	NSX	teaming	policy.	If	the	virtual	switch	is	a	VDS,	only	NSX	DVPG	traffic	will	follow	the	NSX	teaming	policy.	The	infrastructure	traffic	will	follow	the	teaming	policy	defined	in	their	respective	VDS	standard	DVPGs	configured	in	vCenter.	The	top-of-rack	switches	are	configured	with	a	first	hop	redundancy	protocol	(e.g.	HSRP,	VRRP)	providing	an	active	default	gateway	for	all	the	VLANs	on	“ToR-Left”.	The	VMs	are,	for
example,	attached	to	overlay	segments	defined	in	NSX	with	the	default	gateway	set	to	the	logical	interface	of	a	Tier1	gateway.	With	the	use	of	a	single	teaming	policy,	the	above	design	allows	for	a	simple	configuration	of	the	physical	infrastructure	and	simple	traffic	management	at	the	expense	of	leaving	an	uplink	completely	unused.	It	is	however	easy	to	load	balance	traffic	across	the	two	uplinks	while	maintaining	the	deterministic	nature	of	the	traffic	distribution.	The	following	example	is	showing	the	same	hosts,	this	time	configured	with	two	separate
failover	order	teaming	policies:	one	with	P1	active,	P2	standby,	and	the	other	with	P1	standby,	P2	active.	Then,	individual	traffic	type	can	be	assigned	a	preferred	path	by	mapping	it	to	either	teaming	policy.	Figure	7‑14:	ESXi	Compute	Rack	Failover	Order	Teaming	with	two	Teaming	Policies	In	Figure	7‑14:	ESXi	Compute	Rack	Failover	Order	Teaming	with	two	Teaming	Policies	storage	and	vMotion	traffic	are	following	a	teaming	policy	putting	P1	as	active,	while	management	and	VM	traffic	are	following	a	teaming	policy	putting	P2	as	active.	When	the	virtual
switch	is	an	N-VDS,	all	segments	follow	the	same	default	teaming	policy	by	default.	VLAN	segments	can	however	be	associated	to	additional	teaming	policies	(identified	by	a	name,	and	thus	called	“named”	teaming	policies).	The	above	design	can	thus	be	achieved	with	a	default	teaming	policy	(P2	active/P1	standby)	and	an	additional	named	teaming	policy	(P1	active/P2	standby)	to	which	NSX	VLAN	segments	for	storage	and	vMotion	traffic	are	mapped.	When	the	virtual	switch	is	an	VDS	with	NSX,	the	above	design	is	achieved	with	a	default	teaming	policy	P2
active	&	P1	standby.	Then,	the	DVPGs	for	infrastructure	traffic	need	to	be	configured	individually:	storage	and	vMotion	will	have	a	failover	order	teaming	policy	setting	P1	active	&	P2	standby,	while	the	management	DVPG	will	be	configured	for	P2	active	&	P1	standby.	To	limit	interlink	usage,	the	ToR	switches	are	configured	with	a	first	hop	redundancy	protocol	(FHRP),	providing	an	active	default	gateway	for	storage	and	vMotion	traffic	on	“ToR-Left”,	management	and	overlay	traffic	on	“ToR-Right”.	The	VMs	are	attached	to	segments	defined	on	the	N-VDS,
with	the	default	gateway	set	to	the	logical	interface	of	their	attached	Tier-1	gateway.	Use	of	multiple	teaming	policies	allows	utilization	of	all	available	pNICs	while	maintaining	deterministic	traffic	management.	This	is	a	better	and	recommended	approach	when	utilizing	“failover	mode”	teaming	for	all	traffic.	7.3.2.2							Load	Balance	Source	Teaming	Mode	NSX-T	supports	two	source	teaming	policies:	load	balancing	based	on	source	port	and	load	balancing	based	on	source	mac	address.	Those	are	the	exact	equivalent	to	the	source	teaming	policies	available	on
VDS.	Figure	7‑15:	ESXi	Compute	Rack	Load	Balanced	Source	Teaming	shows	the	same	two-pNIC	design	as	in	the	previous	example,	this	time	with	either	source	teaming	policy	available	on	VDS	and	N-VDS.	With	this	kind	of	policy,	potentially	both	uplinks	are	utilized	based	on	the	hash	value	generated	from	the	source	port	originating	the	traffic	or	the	source	MAC	address	of	the	traffic.	Notice	that	NSX	instantiates	one	TEP	on	every	uplink	part	of	the	source	teaming	policy	in	order	to	be	able	to	send	overlay	traffic	on	all	those	physical	ports.	Both	infrastructure
and	guest	VM	traffic	benefit	from	this	policy,	allowing	the	use	of	all	available	uplinks	on	the	host.	A	recommended	design	change	compared	to	failover	teaming	policy	is	the	designation	of	first	hop	redundancy	protocol	(FHRP)	redundancy.	Since	all	uplinks	are	in	use,	FHRP	can	be	used	to	better	distribute	different	types	of	traffic,	helping	reduce	traffic	across	the	inter-switch	link.	As	the	teaming	option	does	not	control	which	link	will	be	utilized	for	a	VMkernel	interface,	there	will	be	some	inter-switch	link	traffic;	splitting	FHRP	distribution	will	help	reduce	the
probability	of	congestion.		The	ToR	switches	are	configured	with	an	FHRP,	providing	an	active	default	gateway	for	storage	and	vMotion	traffic	on	“ToR-Left”,	management	and	overlay	traffic	on	“ToR-Right”.	The	VMs	are	attached	to	segments	defined	in	NSX,	with	the	default	gateway	set	to	the	logical	interface	of	their	Tier-1	gateway.			Figure	7‑15:	ESXi	Compute	Rack	Load	Balanced	Source	Teaming	Additionally,	one	can	utilized	a	mix	of	the	different	teaming	policy	types	together	such	that	infrastructure	traffic	(VSAN,	vMotion,	Management)	leverage	“failover
order”	enabling	deterministic	bandwidth	and	failover,	while	VM	traffic	use	some	“load	balance	source”	teaming	policy,	spreading	VM	traffic	across	both	pNICs.	On	a	host	running	NSX	with	an	N-VDS,	the	default	teaming	policy	will	have	to	be	configured	for	“load	balance	source”,	as	it’s	the	only	policy	that	overlay	traffic	follows.	Then,	individual	VLAN	segments	can	be	mapped	to	named	teaming	policies	steering	the	infrastructure	traffic	to	the	desired	uplink.	On	a	host	running	VDS	with	NSX,	overlay	traffic	will	follow	the	default	teaming	policy	defined	in	NSX.
Infrastructure	traffic	will	follow	the	individual	teaming	policies	configured	on	their	DVPGs	in	vCenter.	Based	on	requirement	of	underlying	applications	and	preference,	one	can	select	a	type	of	traffic	management	as	desired	for	all	the	infrastructure	traffic.	However,	for	the	overlay	traffic,	it	is	highly	recommended	to	use	one	of	the	“load	balanced	source”	teaming	policies	as	they’re	the	only	ones	allowing	overlay	traffic	on	multiple	active	uplinks	and	thus	provide	better	throughput	in/out	of	the	host	for	VM	traffic.	7.3.2.3							LAG	based	traffic	distribution		An
alternate	method	to	distribute	traffic	is	via	using	LAG.	In	order	to	keep	ToR	redundancy,	this	scenario	would	require	the	ESXi	hosts	be	connected	to	separate	ToRs	forming	a	single	logical	LAG,	based	on	some	multi-chassis	link	aggregation	(MLAG,	VPC	etc.)	Relying	on	this	kind	of	technology	is	not	recommended	because	it’s	vendor	dependent	and	typically	involves	significant	vendor-specific	limitations	that	VMware	has	not	validated.	This	introduces	troubleshooting	complexity	and	potential	support	coordination	challenges	across	multiple	vendors.	However,
many	times	existing	deployment	of	compute	may	carry	this	type	of	teaming	and	often	customer	operational	model	has	accepted	the	risk	and	knowledge	set	to	operationalize	LAG	based	teaming.		For	those	existing	deployment,	one	can	adopt	LAG	based	teaming	mode,	for	compute	only	workload.	In	other	words,	if	the	compute	host	is	carrying	edge	VMs	(for	North-South	traffic	and	requires	peering	over	LAG)	traffic	then	its	highly	recommended	to	decouple	the	edge	and	compute	with	either	dedicated	edge	hosts	or	edge	and	management.		Please	refer	to	a
specific	section	which	discussed	disadvantage	of	mixing	compute	and	edge	VM	further	below	in	this	chapter.	7.3.3					ESXi-Based	Compute	Hypervisor	with	Four	(or	more)	pNICs	In	most	cases,	a	host	with	4	or	more	pNICs	can	be	configured	exactly	the	same	way	as	a	2-pNIC	host.	There	are	just	more	available	uplinks	available	for	consumption	by	the	different	teaming	policies.	We	are	going	to	focus	on	few	scenarios	where	4	pNICs	or	more	is	necessary.	7.3.3.1							Simple	install,	traffic	on	separate	uplinks	for	policy	reason	With	a	minimum	of	four	pNICs,	an
ESXi	host	can	run	two	virtual	switches,	each	with	redundant	uplinks.	This	property	was	appreciated	by	customers	as	it	enabled	a	simple	and	non-disruptive	installation	of	NSX	on	their	ESXi	hypervisors.	They	could	simply	deploy	and	N-VDS	with	two	dedicated	uplinks	for	VM	traffic,	while	leaving	an	existing	VSS/VDS	running	on	two	separate	uplinks	to	handle	infrastructure	traffic.	On	the	top	of	this	simple	NSX	installation,	the	model	also	provides	for	a	strict	separation	between	VM	and	infrastructure	traffic.	There	are	scenarios	where	this	separation	is
mandated	by	policy,	and	the	fact	that	NSX	is	deployed	on	its	dedicated	virtual	switch	ensured	that	no	misconfiguration	could	ever	lead	to	VM	traffic	being	sent	on	the	uplinks	dedicated	to	infrastructure	traffic,	owned	by	a	different	virtual	switch.	The	following	Figure	7‑16:	ESXi	Compute	Rack	4	pNICs	–	VDS	and	NSX	virtual	switch	represents	an	example	of	a	host	with	4	uplinks	and	two	virtual	switches:	■							A	VDS	dedicated	to	infrastructure	traffic	and	■							Another	NSX	prepared	VDS	or	N-VDS	that	handles	VM	traffic.			Figure	7‑16:	ESXi	Compute	Rack	4
pNICs	–	VDS	and	NSX	virtual	switch	The	VDS	is	configured	with	pNICs	“P1”	and	“P2”.	And	each	port	group	is	configured	with	different	pNICs	in	active/standby	to	use	both	pNICs.	However,	the	choice	of	teaming	mode	on	VDS	is	left	up	to	user	or	existing	implementation.		The	virtual	switch	running	NSX	owns	pNICs	“P3”	and	“P4”.	To	offer	usage	of	both	pNICs,	N-VDS	is	configured	in	load	balance	source	teaming	mode,	as	described	in	the	previous	section.	Each	type	of	host	traffic	has	dedicated	IP	subnets	and	VLANs.	To	limit	interlink	usage,	the	ToR	switches
are	configured	with	an	FHRP,	providing	an	active	default	gateway	for	storage	and	vMotion	traffic	on	“ToR-Left”,	management	and	overlay	traffic	on	“ToR-Right”.	When	all	pNICs	are	up,	only	some	overlay	traffic	will	cross	the	inter	switch	link.	The	model	in	Figure	7‑16:	ESXi	Compute	Rack	4	pNICs	–	VDS	and	NSX	virtual	switch	still	makes	sense	when	running	NSX	on	N-VDS.	However,	now	that	we	can	deploy	NSX	directly	on	a	VDS,	the	equivalent	functionality	can	be	easily	achieved	with	a	single	VDS	running	NSX	and	owning	the	four	uplinks,	as	represented
below.			Figure	7‑17:	ESXi	Compute	Rack	4	pNICs	–	VDS	and	NSX	virtual	switch	You	can	achieve	this	configuration	by	simply	mapping	the	4	uplinks	of	the	host	to	4	uplinks	on	the	VDS.	Then,	install	NSX	using	an	uplink	profile	that	maps	its	uplinks	(Uplink1/Uplink2	in	the	diagram)	to	the	VDS	uplinks	P3	and	P4.	This	model	still	benefits	from	the	simple,	non-disruptive	installation	of	NSX.	At	the	same	time,	the	NSX	component	can	only	work	with	the	2	uplinks	mapped	to	the	uplink	profile.	This	means	that	VM	traffic	can	never	flow	on	P1/P2.	The	final	added
benefit	of	this	model	is	that	the	administrator	can	manage	a	single	virtual	switch	and	if	allows	flexibility	of	adding	additional	uplinks	for	overlay	or	infrastructure	traffic.	7.3.3.2							Multiple	virtual	switches	as	a	requirement	Certain	scenarios	still	call	for	multiple	virtual	switches	on	a	host.	For	example:	Allows	compliance-based	topology	e.g.	PCI,	HIPPA	etc.,	which	often	but	not	always	necessitate	separate	and	dedicated	infrastructure	components	(e.g.	pNIC,	operational	controls	etc.)	Build	a	cloud	provider	model	in	which	internal	or	external	facing
infrastructure	requires	to	be	on	separate	virtual	switches.	There	is	a	specific	use	case	for	NFV	(Network	Function	Virtualization)	where	two	pNICs	is	dedicated	to	standard	virtual	switch	for	overlay	and	other	two	pNICs	for	“enhanced	mode”	virtual	switch.	The	“enhanced	mode”	is	not	discussed	here.	Please	refer	to	VMware	NFV	documentation.	In	the	following	scenario,	shown	in	Figure	7‑18:	ESXi	Compute	Rack	4	pNICs-	Two	N-VDS,	each	virtual	switch	is	built	to	serve	specific	topology	or	provide	separation	of	traffic	based	on	enterprise	requirements.	The
virtual	switches	on	a	given	host	can	be	either	VDS	or	N-VDS	(note	however	that	if	both	virtual	switches	are	prepared	for	NSX,	they	can	either	be	both	VDS	with	NSX	or	both	N-VDS,	not	a	mix	of	N-VDS	and	VDS	with	NSX.).	The	segments	cannot	extend	between	two	virtual	switches	as	its	tied	to	a	transport	zone.	Figure	7‑18:	ESXi	Compute	Rack	4	pNICs-	Two	N-VDS	In	any	of	the	below	cases	the	infrastructure	traffic	will	be	carried	on	the	first	virtual	switch.	If	this	is	an	N-VDS,	it	will	require	VMkernel	and	uplink	migration.	Here	are	some	few	possible	examples:
1)					First	two	pNICs	are	exclusively	used	for	infrastructure	traffic	and	remaining	two	pNICs	for	overlay	VM	traffic.		This	allows	dedicated	bandwidth	for	overlay	application	traffic.	One	can	select	the	appropriate	teaming	mode	as	discussed	in	above	two	pNICs	design	as	appropriate.	2)					First	two	pNICs	are	dedicated	“VLAN	only”	micro-segmentation	and	second	one	for	overlay	traffic	3)					Building	multiple	overlay	for	separation	of	traffic,	though	TEP	IP	of	both	overlays	must	be	in	the	same	VLAN/subnet	albeit	different	transport	zones	4)					Building	regulatory
compliant	domain	either	the	VLAN	only	or	overlay	5)					Building	DMZ	type	isolation	Both	virtual	switches	running	NSX	must	attach	to	different	transport	zones.	See	detail	in	section	Segments	and	Transport	Zones	=====================================================================	Note:	The	second	virtual	switch	could	be	of	enhanced	datapath	type,	for	the	NFV	use	case.	This	type	is	beyond	the	scope	of	this	design	guide.	Please	refer	to	Appendix	1	for	NFV	resources.
=====================================================================	7.3.4					KVM-Based	Compute	Hypervisor	with	two	pNICs	Figure	7‑19:	KVM	Compute	Rack	Failover	Teaming	In	Figure	7‑19:	KVM	Compute	Rack	Failover	Teaming	the	design	is	very	similar	to	ESXi	Failover	Order	Teaming	Mode.	A	single	host	switch	is	used	with	a	2	pNICs	design.	This	host	switch	manages	all	traffic	–	overlay,	management,	storage,	etc.	Physical	NICs	“P1”	and	“P2”	are	attached	to	different	top	of	rack	switches.	The	teaming	option
selected	is	failover	order	active/standby;	“Uplink1”	is	active	while	“Uplink2”	is	standby.	As	shown	logical	switching	section,	host	traffic	is	carried	on	the	active	uplink	“Uplink1”,	while	“Uplink2”	is	purely	backup	in	the	case	of	a	port	or	switch	failure.	This	teaming	policy	provides	a	deterministic	and	simple	design	for	traffic	management.	The	top-of-rack	switches	are	configured	with	a	first	hop	redundancy	protocol	(e.g.	HSRP,	VRRP)	providing	an	active	default	gateway	for	all	the	VLANs	on	“ToR-Left”.	The	VMs	are	attached	to	segments/logical	switches	defined
on	the	N-VDS,	with	the	default	gateway	set	to	the	logical	interface	of	the	distributed	Tier-1	logical	router	instance.	Note	about	N-VDS	ports	and	bridge:	NSX-T	host	preparation	of	KVM	creates	automatically	the	N-VDS	and	its	“Port	NSX-T”	(with	TEP	IP	address)	and	“Bridge	nsx-managed”	(to	plug	the	VMs).	The	other	ports	like	“Port	Mgt”	and	“Port	Storage”	have	to	be	created	outside	of	NSX-T	preparation.	Figure	7‑20:	Creation	of	the	N-VDS	Mgt	and	Storage	ports	And	IP	addresses	for	those	ports	have	to	be	created	outside	of	NSX-T	preparation.	Figure	7‑21:
Creation	Mgt	and	Storage	IP	addresses	7.4						Edge	Node	and	Services	Design	Edge	nodes	are	available	in	two	form	factors	–	VM	and	bare	metal	server.	While	both	form	factors	offer	the	same	functionality,	their	physical	infrastructure	connectivity	is	quite	different,	however	they	have	common	requirement	of	three	different	types	of	IP	networks	for	specific	purposes:	Management	–	Accessing	and	controlling	the	Edge	node	Overlay	(TEP)	-	Creating	tunnels	with	peer	transport	nodes	External	(N-S)	-	Peering	with	the	physical	networking	infrastructure	to	provide
connectivity	between	the	NSX-T	virtual	components	and	the	external	network	Edge	nodes	provide	a	pool	of	capacity	for	running	centralized	services	in	NSX-T.	Edge	nodes	are	always	active	in	the	context	of	connectivity	and	control	plane.	They	host	Tier-0	and	Tier-1	routing	services,	installed	in	either	active/active	or	active/standby	mode.	Additionally,	if	a	Tier-0	or	Tier-1	router	enables	stateful	services	(e.g.,	NAT,	Load	Balancer,	Gateway	Firewall	&	VPN)	it	can	only	be	deployed	in	active/standby	mode.	The	status	of	active	or	standby	mode	is	within	the	context
of	data	plane	forwarding	rather	than	related	to	the	Edge	node	itself.	The	Edge	node	connectivity	options	discussed	below	are	independent	of	type	of	services	enabled	on	a	given	node.	Design	choices	with	Edge	node	significantly	improved	with	NSX-T	2.5	release.		This	section	is	divided	into	four	major	areas:	The	bridging	design	The	existing	design	recommendation	with	release	up	to	version	2.5	New	design	recommendation	starting	with	NSX-T	release	2.5	Edge	services	and	resources	considerations	7.4.1					Design	Considerations	with	Bridging	The	chapter	3
section	bridging	capability	covers	the	basic	functionality	and	availability	model	requirements.	The	next	section	covers	bridging	design.		The	respective	topology	also	covers	adding	bridging	into	the	mix	and	its	implications.	7.4.1.1							Bridge	on	a	VM	form	factor	Edge	The	Edge	Bridge	is	available	on	both	Edge	form	factors	-	bare	metal	or	Virtual	Machine	(VM)	The	use	of	the	Bridge	in	the	bare	metal	form	factor	is	relatively	straightforward:	the	bridged	traffic	is	sent	on	the	uplinks	of	the	N-VDS	selected	by	VLAN	transport	zone	specified	on	the	Bridge	Profile.
There	is	no	Bridge-specific	configuration	necessary	on	the	physical	infrastructure	where	the	bare	metal	Edge	attaches.	This	section	is	going	to	focus	on	a	Bridge	running	on	a	VM	form	factor	of	the	Edge.	7.4.1.1.1								Edge	VM	vNIC	Configuration	Requirement	with	Bridging	For	the	VM	form	factor,	it	is	important	to	remember	that	the	Edge	Bridge	will	end	up	sourcing	traffic	from	several	different	mac	addresses	on	its	VLAN	vNIC.	This	means,	that	the	uplink	vNIC	must	be	connected	to	a	DVPG	port	group	allowing:							Forged	transmit							Mac	learning	or
promiscuous	mode	Both	above	capabilities	are	not	supported	on	VSS	while	supported	on	VDS.	This	means	it’s	a	strong	recommendation	is	to	use	VDS	when	deploying	Edge	node.	Mac	learning	is	available	on	the	VDS	as	of	vSphere	6.7.	However,	there	is	no	GUI	capability	on	vCenter	to	configure	mac-learning	as	of	this	writing	but	it	can	be	enabled	via	API	or	using	powerCLI	(See	If	deployment	is	running	vSphere	6.5	where	mac	learning	is	not	available,	the	only	other	way	to	run	bridging	is	by	enabling	promiscuous	mode.	Typically,	promiscuous	mode	should	not
be	enabled	system	wide.		Thus,	either	enable	promiscuous	mode	just	for	DVPG	associated	with	bridge	vNIC	or	it	may	be	worth	considering	dedicating	an	Edge	VM	for	the	bridged	traffic	so	that	other	kinds	of	traffic	to/from	the	Edge	do	not	suffer	from	the	performance	impact	related	to	promiscuous	mode.	7.4.1.1.2								Edge	VM:	Virtual	Guest	Tagging	The	Edge	Bridge	will	be	sending	bridged	traffic	with	an	802.1Q	tag	on	its	VLAN	uplink.	That	means	that	this	Edge	VM	vNIC	will	have	to	be	attached	to	a	port	group	configured	for	Virtual	Guest	Tagging	(VGT,	i.e.
the	DVPG	shows	as	VLAN	Trunk	in	the	vCenter	UI.)		Refer	VLAN	TAG	Requirements	in	chapter	4.8.2.2	for	more	information.		7.4.1.1.3								Edge	VM	Configuration	Example	for	the	Bridge	The	following	Figure	7‑22:	Dedicated	Edge	VM	for	Bridging	represents	an	Edge	VM	dedicated	to	bridging	and	following	the	rules	enunciated	earlier	in	this	section.	The	Edge	VM	has	four	vNICs,	but	this	design	only	uses	3:	vNIC1	is	dedicated	to	management	traffic	vNIC2	is	the	uplink	of	N-VDS1,	the	N-VDS	that	will	be	used	for	overlay	traffic.	The	overlay	DVPG	is	using
active/standby	both	pNICs	of	the	host	for	redundancy.	vNIC3	is	the	uplink	of	N-VDS2	that	is	attached	to	the	VLAN	transport	zone	“N-VDS2”	where	the	bridged	traffic	will	be	sent.	The	“Bridge	VLAN”	DVPG	has	the	following	configuration:	Virtual	Guest	Tagging	is	enabled	so	that	it	is	possible	to	bridge	to	several	segments	to	different	VLAN	IDs	Forged	transmit	and	mac	learning,	so	that	the	bridge	can	send	traffic	sourced	from	different	mac	addresses.	If	mac	learning	is	not	possible,	the	promiscuous	can	be	configured	instead	at	the	expense	of	degraded
performance.	Active	standby	teaming	policy	leveraging	the	same	pNICs	(but	not	necessarily	in	the	same	order)	as	the	overlay	DVPG.	That	last	point	is	important	and	will	be	justified	in	the	next	part.	Figure	7‑22:	Dedicated	Edge	VM	for	Bridging	7.4.1.1.4								Edge	VM:	Edge	uplink	protection	As	we	have	seen,	the	Edge	Bridge	sends/receives	two	kinds	of	traffic	on	its	uplinks:	overlay	traffic	and	VLAN	traffic.	This	part	discusses	how	to	protect	both	against	failure	in	the	data	path	on	the	host.	The	Edge	HA	mechanism	is	exchanging	BFD	hellos	over	the	tunnels
between	the	different	Edges	in	the	Edge	Cluster.	As	a	result,	overlay	traffic	is	protected	against	failure	in	the	data	path.	In	Figure	7‑22:	Dedicated	Edge	VM	for	Bridging	above,	if	both	P1	and	P2	went	down	on	the	host,	all	the	tunnels	between	this	Edge	VM	and	its	peers	would	go	down.	As	a	result,	this	Edge	VM	would	be	considered	as	failed	by	Edge	HA	and	another	Edge	would	take	over	the	services	it	was	running	(including,	but	not	limited	to,	the	bridge	service.)	7.4.1.2							Redundant	VLAN	connectivity	The	Edge	Bridge	HA	mechanism	does	not	protect
against	connectivity	problem	in	the	VLAN	infrastructure	beyond	the	Edge	physical	uplink.	Figure	7‑23:	Physical	bridging	infrastructure	must	be	redundant	In	the	above	scenario,	the	failure	of	the	uplink	of	Edge	1	to	physical	switch	S1	would	trigger	an	Edge	Bridge	convergence	where	the	Bridge	on	Edge	2	would	become	active.	However,	the	failure	of	the	path	between	physical	switches	S1	and	S3	(as	represented	in	the	diagram)	would	have	no	impact	on	the	Edge	Bridge	HA	and	would	have	to	be	recovered	in	the	VLAN	L2	domain	itself.	Here,	we	need	to	make
sure	that	the	alternate	path	S1-S2-S3	would	become	active	thanks	to	some	L2	control	protocol	in	the	bridged	physical	infrastructure.	7.4.1.3							Preemptive	vs.	non-preemptive	The	choice	is	between	precise	bandwidth	allocation	on	the	uplinks	and	minimum	disruption.	The	preemptive	model	allows	making	sure	that,	when	the	system	is	fully	operational,	a	Bridge	is	using	a	specified	uplink	for	its	VLAN	traffic.	This	is	required	for	scaling	out	the	solution,	precisely	distributing	the	load	across	several	Edge	Bridges	and	getting	more	aggregate	bandwidth	between
virtual	and	physical	by	doing	Segment/VLAN	load	balancing.	The	non-preemptive	model	maximizes	availability.	If	the	primary	fails	then	recovers,	it	will	not	trigger	a	re-convergence	that	could	lead	to	unnecessary	packet	loss	(by	preempting	the	currently	active	backup.)	The	drawback	is	that,	after	a	recovered	failure,	the	bridged	traffic	remains	polarized	on	one	Edge,	even	if	there	was	several	Bridge	Profiles	defined	on	this	pair	of	Edges	for	Segment/VLAN	load	balancing.	Also	note	that,	up	to	NSX-T	release	2.5,	a	failover	cannot	be	triggered	by	user
intervention.	As	a	result,	with	this	design,	one	cannot	assume	that	both	Edges	will	be	leveraged	for	bridged	traffic,	even	when	they	are	both	available	and	several	Bridge	Profiles	are	used	for	Segment/VLAN	load	balancing.	This	is	perfectly	acceptable	if	availability	is	more	important	than	available	aggregate	bandwidth.	7.4.1.4							Performance:	scaling	up	vs.	scaling	out	The	performance	of	the	Edge	Bridge	directly	depends	on	the	Edge	running	it.	NSX	thus	offers	the	option	to	scale	up	the	Edge	Bridge	from	a	small	form	factor	Edge	VM	running	several	other
centralized	services	to	a	powerful	bare	metal	Edge	node	dedicated	to	bridging.	Scaling	out	is	also	possible,	as	a	complement	to	or	instead	of	scaling	up.	By	creating	two	separate	Bridge	Profiles,	alternating	active	and	backup	Edge	in	the	configuration,	the	user	can	easily	make	sure	that	two	Edge	nodes	simultaneously	bridge	traffic	between	overlay	and	VLAN.	The	diagram	below	shows	two	Edges	with	two	pairs	(numbered	1	and	2)	of	redundant	Edge	Bridges.	The	configuration	defines	the	Primary	1	on	Edge	1	and	Primary	2	on	Edge	2.	With	preemption
configured,	this	ensures	that	when	both	Edges	are	available,	both	are	active	for	bridging	traffic.	Figure	7‑24:	Load-balancing	bridged	traffic	for	two	Logical	Switches	over	two	Edges	(Edge	Cluster	omitted	for	clarity.)	Further	scale	out	can	be	achieved	with	more	Edge	nodes.		The	following	diagram	shows	an	example	of	three	Edge	Nodes	active	at	the	same	time	for	three	different	Logical	Switches.	Figure	7‑25:	Load-balancing	example	across	three	Edge	nodes	(Bridge	Profiles	not	shown	for	clarity.)	Note	that	if	several	Bridge	Profiles	can	be	configured	to	involve
several	Edge	nodes	in	the	bridging	activity,	a	given	Bridge	Profile	cannot	specify	more	than	two	Edge	nodes.	7.4.2					Multiple	N-VDS	Edge	Node	Design	before	NSX-T	Release	2.5	The	“three	N-VDS	per	Edge	VM	design”	as	commonly	called	has	been	deployed	in	production.	This	section	briefly	covers	the	design,	so	the	reader	does	not	miss	the	important	decision	which	design	to	adopt	based	on	NSX-T	release	target.	The	multiple	N-VDS	per	Edge	VM	design	recommendation	is	valid	regardless	of	the	NSX-T	release.	This	design	must	be	followed	if	the	deployment
target	is	NSX-T	release	2.4	or	older.	The	design	recommendation	is	still	completely	applicable	and	viable	to	Edge	VM	deployment	running	NSX-T	2.5	release.	In	order	to	simplify	consumption	for	the	new	design	recommendation,	the	pre-2.5	release	design	has	been	moved	to	Appendix	5.	The	design	choices	that	moved	to	appendix	covers							2	pNICs	bare	metal	design	necessitating	straight	through	LAG	topology							Edge	clustering	design	consideration	for	bare	metal							4	pNICs	bare	metal	design	added	to	support	existing	deployment							Edge	node	design
with	2	and	4	pNICs	It’s	a	mandatory	to	adopt		Appendix	5	recommendation	for	NSX-T	release	up	to	2.5	and	beyond.		The	newer	design	as	described	in	section	The	Design	Recommendation	with	Edge	Node	NSX-T	Release	2.5	Onward	will	not	operate	properly	if	adopted	in	release	before	NSX-T	2.5.			In	addition,	readers	are	highly	encouraging	to	read	the	below	reasoning	to	appreciate	the	new	design	recommendation.	7.4.3					The	Design	Recommendation	with	Edge	Node	NSX-T	Release	2.5	Onward	The	design	consideration	for	Edge	node	has	changed	with	two
critical	areas	of	enhancements							Multi-TEP	support	for	Edge	–	Details	of	multi-TEP	is	described	in	Chapter	4.	Just	like	an	ESXi	transport	node	supporting	multiple	TEP,	Edge	node	has	a	capability	to	support	multiple	TEP	per	uplink	with	following	advantages:	Removes	critical	topology	restriction	with	bare	metal	–	straight	through	LAG	Allowing	the	use	of	multiple	pNICs	for	the	overlay	traffic	in	both	bare	metal	and	VM	form	factor.	An	Edge	VM	supporting	multiple	TEP	allows	it	to	have	two	uplinks	from	the	same	N-VDS,	allowing	utilization	of	both	pNICs.
Efficient	load	sharing	among	host	to	Edge	VM.							Multiple	teaming	policy	per	N-VDS	–	Default	and	Named	Teaming	Policy	Allows	specific	uplink	to	be	designated	or	pinned	for	a	given	VLAN	Allowing	uplinks	to	be	active/standby	or	active-only	to	drive	specific	behavior	of	a	given	traffic	types	while	co-existing	other	traffic	type	following	entirely	different	paths							Normalization	of	N-VDS	configuration	–	All	form	factors	or	Edge	and	deployments	uses	single	N-VDS	along	with	host.	Single	teaming	policy	for	overlay	–	Load	Balanced	Source.	Single	policy	for	N-S
peering	–	Named	teaming	Policy							Reduction	in	management	and	control	plane	load	–	With	each	N-VDS,	additional	resources	are	used	such	as	IP	addressing	for	management,	connections	to	NSX	manager	and	BFD	sessions	to	all	transport	nodes	as	well	all	the	Edge	nodes.		The	BFD	sessions	are	fully	meshed,	in	other	words	the	session	counts	increase	with	each	N-VDS	with	N(N-1)	expansion.	The	CPU	resources	are	also	consumed	by	multiple	N-VDS	within	the	same	Edge	VM.	The	above	functionalities	and	enhancements	allows	a	consistent	configuration	for
any	types	of	deployment	choices	–	bare	metal	Edge,	Edge	VM	on	VDS	enabled	ESXi	host	and	Edge	VM	on	N-VDS	enable	ESXi	host.		In	conjunction,	while	maintaining	the	existing	best	practices	design	of	N-S	connectivity	that	is	deterministic	and	distinct	peering	to	two	ToRs.	This	peering	recommendation	is	common	to	all	design	variation	and	thus	only	discussed	once	below.	One	common	misconception	prevails	that	separation	of	TEP	and	BGP	on	two	different	switches	somehow	increases	the	resiliency	or	availability	of	the	system.	That	is	not	the	case	at	all.	In
fact,	when	both	TEP	and	BGP	are	configured	on	the	same	virtual	switch,	enables	consistent	failover	of	both	TEP	and	BGP	at	the	same	time.	The	dual	VTEP	and	BGP	combination	allows	consistent	configuration	either	with	Edge	VM	or	bare	metal	Edge.	However,	there	are	corner	use	cases	where	asymmetric	bandwidth	ration	of	E-W	vs	N-S	exist	in	that	case	specific	optimization	of	design	may	be	appropriate.	A	special	consideration	is	required	with	deployment	of	multiple	TEP	enabled	Edge	(VM	or	Bare	Metal)	deployed	with	a	physical	fabric	such	as	ACI.	Before
NSX-T	3.0.2,	the	deployment	with	multi-TEP	will	result	into	intermittent	connectivity	because	the	way	Edge	represent	IP/MAC	association	and	enforcement	that	exist	in	physical	fabric.	This	condition	can	be	remediated	by	either	disabling	a	multi-TEP	configuration	in	Edge	VM,	while	running	a	straight	through	LAG	configuration	for	the	Bare	Metal	Edge.		The	less	optimal	option	such	as	disabling	flow	cache	is	possible	but	not	advised	due	to	reduced	performance	of	edge	VM,	however,	may	work	in	specific	situation.	7.4.3.1							Deterministic	Peering	with	Physical
Routers	The	goal	of	the	N-S	connectivity	is	simple,	deterministic	and	redundant	configuration	without	incurring	any	dependencies	on	Spanning-tree	related	configuration.	This	means	the	peering	VLAN	is	confined	to	a	specific	ToR	and	do	not	span	across	ToR.	This	topology	choice	also	allows	direct	mapping	from	Edge	node	uplinks	to	physical	NIC	of	the	devices	(bare	metal	or	ESXi	host)	and	eventually	to	ToR	interface.	This	creates	1:1	mapping	of	physical	connectivity	and	logical	peering	connectivity	from	Edge	node	to	physical	router.	Resulting	in	to	simple,
operationally	deterministic	connectivity	of	N-S	traffic	forwarding	and	troubleshooting.	As	operator	always	knows	the	specific	peering	is	impacted	during	the	failure	of	pNIC,	ToR	or	Edge-Uplink.	In	the	typical	enterprise	design,	Edge	nodes	in	Figure	7‑26:	Typical	Enterprise	Bare	metal	Edge	Note	Logical	View	with	Overlay/External	Traffic	are	assigned	to	a	Tier-0	router.	This	Tier-0	router	peers	with	the	physical	infrastructure	using	eBGP.	Two	adjacencies	per	Edge	node	with	two	logical	switch	connects	to	distinct	“External-VLAN”	per	ToR.	Figure	7‑26:	Typical
Enterprise	Bare	metal	Edge	Note	Logical	View	with	Overlay/External	Traffic	represents	the	logical	view	of	BGP	peering.	Figure	7‑26:	Typical	Enterprise	Bare	metal	Edge	Note	Logical	View	with	Overlay/External	Traffic	From	the	perspective	of	the	physical	networking	devices,	the	Tier-0	router	looks	like	a	single	logical	router;	logically,	the	adjacency	to	“Router1”	is	hosted	on	Edge	node	“EN1”,	while	“EN2”	is	implementing	the	peering	to	“Router2”.	Those	adjacencies	are	protected	with	BFD,	allowing	for	quick	failover	should	a	router	or	an	uplink	fail.	See	the
specific	Graceful	Restart	and	BFD	Interaction	with	Active/Standby	interaction	based	on	type	of	services	–	ECMP	or	stateful	services	–	enabled	in	the	Edge	node	and	type	of	physical	routers	supported.	7.4.4					Bare	Metal	Edge	Design	The	bare	metal	Edge	node	is	a	dedicated	physical	server	that	runs	a	special	version	NSX-T	Edge	software.	The	bare	metal	Edge	node	requires	a	NIC	supporting	DPDK.	VMware	maintains	a	list	of	the	compatibility	with	various	vendor	NICs.	This	design	guide	covers	a	common	configuration	using	the	minimum	number	of	NICs	on
the	Edge	nodes.	The	design	covers	commonly	deployed	bare	metal	configuration.	7.4.4.1							NSX-T	2.5	Based	Bare	metal	Design	with	2	pNICs	Typically,	many	modern	pNIC	capable	of	performing	at	line	rate	for	majority	of	workloads	and	services.	Thus,	Edge	VM	with	2	pNICs	design	with	NIC	speed	of	10/25	Gbps	is	good	enough	when	compared	to	2	pNICs	bare	metal	design.	However,	the	bare	metal	with	two	or	greater	pNICs	configuration	is	desired	for	few	reasons.	Those	are:							Consistent	footprint	(CPU	and	pNIC)	configuration	matching	compute						
Requirement	of	line	rate	services							Higher	bandwidth	pNIC	(25	or	40	Gbps)							Adaptation	for	certain	workload	that	requires	near	line	rate	throughput	with	low	packet	size	(~	250	Bytes)							Sub-second	link	failure	detection	between	physical	and	Edge	node							Focused	Operational	responsibility	and	consistency	as	appliance	model	with	network	operation	team							Multiple	Tier-0	deployment	models	with	top	Tier-0	driving	the	bandwidth	and	throughput	with	higher	speed	(40	Gbps)	NICs.	The	details	guidance	and	configuration	recommendation	is	already
covered	in	Single	N-VDS	Bare	Metal	Configuration	with	2	pNICs	in	logical	routing	chapter	4.	However,	few	additional	considerations	that	applies	to	bare	metal	design	as	follows:							Management	interface	redundancy	is	not	always	required	but	a	good	practice.	In-band	option	is	most	practical	deployment	model							BFD	configuration	recommendation	for	link	failure	detection	is	300/900	mSec	(Hello/Dead),	however	assure	BFD	configuration	matches	between	both	ToR	and	Edge	node.	Recommended	BGP	timer	is	set	to	either	default	or	matching	remote	BGP
peer							Without	BFD,	recommended	BGP	timer	is	1/3	Sec	(Hello/Dead)	Figure	7‑27:	4-way	ECMP	Using	Bare	Metal	Edges	shows	a	logical	and	physical	topology	where	a	Tier-0	gateway	has	four	external	interfaces	(as	Edge	instances	is	defined	globally,	instantiated	in	each	node).	External	interfaces	1	and	2	are	provided	by	bare	metal	Edge	node	“EN1”,	whereas	External	interfaces	3	and	4	are	provided	by	bare	metal	Edge	node	“EN2”.	Both	the	Edge	nodes	are	in	the	same	rack	and	connect	to	TOR	switches	in	that	rack.	Both	the	Edge	nodes	are	configured	for
Multi-TEP	and	use	named	teaming	policy	to	send	traffic	from	VLAN	300	to	TOR-Left	and	traffic	from	VLAN	400	to	TOR-Right.	Tier-0	Gateway	establishes	BGP	peering	on	all	four	external	interfaces	and	provides	4-way	ECMP.			Figure	7‑27:	4-way	ECMP	Using	Bare	Metal	Edges	Bridging	Design	with	2	pNICs	Bare	Metal	Node	As	discussed	in	High	Availability	with	Bridge	Instances,	the	bridge	instance	with	active-backup	pair	is	shown	in	above	picture.	By	default,	the	bridge	instance	will	always	select	the	first	active	pNIC.	Any	additional	bridge	instances	will	still
continue	using	the	same	pNIC.		User	have	a	choice	to	select	distinct	uplink	via	API	call	as	shown	in	Appendix4	However,	overall	discussion	on	bridge	load	balancing	see	below.	When	configuring	bridging	on	a	bare	metal	Edge,	traffic	load	balancing	can	be	configured	on	a	per	segment	basis.	Two	levels	of	traffic	load	balancing	can	be	configured:							Between	Edges:	Considering	Figure	7‑27:	4-way	ECMP	Using	Bare	Metal	Edges	below	two	different	Bridge	Profiles	BP1	and	BP2	can	configured,	with	BP1	selecting	EN1	as	active,	while	BP2	selects	EN2	as	active.
By	mapping	segments	to	either	BP1	or	BP2,	in	stable	condition,	their	bridged	traffic	will	be	handled	by	either	Edge.	This	the	recommended	method	for	achieving	load	balancing.							Between	uplinks	on	a	given	Edge:	Either	in	Figure	7‑27:	4-way	ECMP	Using	Bare	Metal	Edges	or	Figure	7‑28:	4	pNIC	Bare	Metal	-	ECMP	&	Bridging,	each	Edge	has	multiple	uplinks	capable	of	carrying	VLAN	bridged	traffic.	However,	by	default,	the	Bridge	will	only	the	first	uplink	specified	in	the	teaming	policy	of	the	VLAN	transport	zone	used	for	bridged	traffic.	It	is	however
possible	to	override	this	default	on	a	per	segment	basis,	using	a	named	teaming	policy	privileging	the	other	uplink.	The	only	way	to	achieve	this	today	in	NSX-T	2.5	is	via	the	API	method	described	in	Appendix	4.	This	method	is	recommended	if	deployment	needs	several	bridge	instances	active	at	once	and	bare	metal	uplink	bandwidth	is	heavily	utilized	(either	by	multiple	bridge	instances	or	by	N-S	overlay	traffic).	7.4.4.2							NSX-T	2.5	Based	Bare	metal	Design	with	greater	than	2	pNICs	(4/8/16)	The	bare	metal	configuration	with	greater	than	2	pNICs	is	the
most	practical	and	recommended	design.	This	is	because	4	or	more	pNICs	configuration	substantially	offer	more	bandwidths	compared	to	equivalent	Edge	VM	configuration	for	the	NIC	speeds	above	25	Gbps	or	more.	The	same	reasons	for	choosing	bare	metal	applies	as	in	2	pNICs	configuration	as	discussed	above.	The	configuration	guideline	with	multiple	NICs	is	discussed	at	Single	N-VDS	Bare	Metal	Configuration	with	Six	pNICs.	This	design	again	uses	single	N-VDS	as	baseline	configuration	and	separate	of	overlay	and	N-S	traffic	on	a	set	of	pNICs.	The
critical	pieces	to	understand	is	the	follow	the	teaming	design	consideration	as	discussed	in	the	Single	N-VDS	Bare	Metal	Configuration	with	Six	pNICs	where	the	first	two	uplinks	(uplink	1	and	uplink	2)	in	below	diagram	associate	with	Load-Balance	Source	ID	teaming	assigning	overlay	traffic	to	first	two	pNICs.	The	N-S	peering	design	remains	the	same	with	single	pNIC	in	each	of	the	associated	uplink	profile.	Figure	7‑28:	4	pNIC	Bare	Metal	-	ECMP	&	Bridging	The	bare	metal	design	with	more	than	four	pNICs	for	data	plane	follows	the	similar	logic	of
maintaining	symmetric	bandwidth	for	overlay	and	N-S	traffic.	E.g.	with	eight	pNICs	design	one	can	allocate	first	four	pNICs	for	overlay	and	rest	for	N-S	peering.	The	design	with	that	combination	requires	for	TEP	IPs	and	four	BGP	peers	per	bare	metal	node	and	thus	additional	planning	is	desire	on	subnet/VLAN	for	transport	and	N-S	ToR.	Bridging	Design	with	greater	than	2	pNICs	bare	metal	node:	See	the	bridging	design	for	load	balancing	in	NSX-T	2.5	Based	Bare	metal	Design	with	2	pNICs.	If	the	bridging	bandwidth	requirements	is	high	or	undergoing	a
large	scale	migration	to	NSX-T	based	cloud,	it	may	require	to	dedicate	2	pNICs	for	bridging	traffic	and	in	that	case	the	above	4	pNICs	design	configuration	changes	to	first	two	pNICs	used	for	TEP/BP	traffic	and	other	two	pNICs	(P3	andP4)	for	bridging.	The	same	availability	and	selective	load-balancing	consideration	applies	here	as	well	as	discussed	in	2	pNICs	section.	7.4.5					Edge	Node	VM	This	section	covers	the	Edge	VM	design	in	various	combinations.	This	design	is	solely	based	on	single	N-VDS	per	Edge	VM	for	basic	overlay	and	N-S	connectivity.	This
design	is	consistent	with	the	design	that	has	been	discussed	for	bare	metal	edge	and	remains	the	same	for	2	pNIC	or	4	pNIC	design.		The	design	pattern	benefits	in	following	ways:							Symmetric	bandwidth	offering	to	both	overlay	and	N-S							Deterministic	peering	of	N-S							Consistent	design	iteration	with	collapsed	cluster	design	where	Edge	VM	is	deployed	on	host	with	N-VDS							Repetitive	with	pNIC	growth	7.4.5.1							NSX-T	2.5	Edge	node	VM	connectivity	with	VDS	with	2	pNICs	The	figure	below	shows	the	Edge	VM	connectivity	with	2	pNIC	ESXi	host.
The	design	configuration	for	overlay	and	N-S	is	described	in	detail	at	Single	N-VDS	Based	Configuration	-	Starting	with	NSX-T	2.5	release.	Figure	7‑29:	Single	N-VDS	per	Edge	VM	-	Two	Edge	Node	VM	on	Host	The	key	design	attributes	are	as	follows:							Transport	zone	–	one	overlay	and	VLAN	–	consistent	compared	to	three	N-VDS	design	where	external	VLANs	have	two	specific	VLAN	transport	zone	due	to	unique	N-VDS	per	peering							N-VDS-1(derived	from	matching	transport	zone	name	–	both	overlay	and	VLAN)	defined	with	dual	uplinks	that	maps	to
unique	vNICs,	which	maps	to	unique	DVPG	at	VDS	–	duality	is	maintained	end-to-end							N-VDS-1	carries	multiple	VLANs	per	vNIC	–	overlay	and	BGP	peering	The	overlay	VLAN	must	be	same	on	both	N-VDS	uplink	with	source	ID	teaming	BGP	Peering	VLAN	is	unique	to	each	vNIC	as	it	carries	1:1	mapping	to	ToR	with	named	teaming	policy	with	only	one	active	pNIC	in	its	uplink	profile							VDS	DVPG	uplinks	is	active-standby	(Failover	Order	teaming	for	the	trunked	DVPG)	to	leverage	faster	convergence	of	TEP	failover.	The	failure	of	either	pNIC/ToR	will	force
the	TEP	IP	(GARP)	to	register	on	alternate	pNIC	and	TOR.	This	detection	happens	only	after	BFD	from	N-VDS	times	out,	however	the	mapping	of	TEP	reachability	is	maintained	throughout	the	overlay	and	thus	system	wide	update	of	TEP	failure	is	avoided	(host	and	controller	have	a	mapping	or	VNI	to	this	Edge	TEP),	resulting	into	reduced	control	plane	update	and	better	convergence.	The	BGP	peering	recovery	is	not	needed	as	alternate	BGP	peering	is	alive,	the	BGP	peering	over	the	failed	pNIC	will	be	timed	out	based	on	either	protocol	timer	or	BFD
detection.							Recommendation	is	not	to	use	the	same	DVPG	for	other	types	of	traffic	in	the	case	of	collapsed	cluster	design	to	maintain	the	configuration	consistency							BFD	configuration	recommendation	for	link	failure	detection	is	1/3	Sec.	(Hello/Dead),	however	assure	BFD	configuration	matches	between	both	ToR	and	Edge	node.	Recommended	BGP	timer	to	either	default	or	matching	remote	BGP	peer.	Sub-second	BFD	timers	(500	ms)	is	also	possible	with	NSX-T	3.0	to	reduce	the	link	failure	detection	time.							Without	BFD,	recommended	BGP	timer	is	set
to	1/3	Sec.	(Hello/Dead)	Bridging	Design	with	Edge	VM:	The	bridging	design	choice	consists	of	either	enabling	bridging	instances	on	existing	N-VDS	inside	Edge	VM	or	dedicating	separate	N-VDS	for	bridging.	The	current	guidance	is	to	use	dedicated	N-VDS	for	bridging	instances.	Figure	7‑30:	Edge	VM	with	Bridging	The	key	design	attributes	are:							Additional	vNIC	(vNIC	4	in	the	picture)	in	Edge	VM	which	maps	to	dedicated	bridge	instance							The	bridge	N-VDS-B	must	be	attached	to	separate	VLAN	transport	zone	since	two	N-VDS	cannot	be	attached	to
same	transport	zone.	Overlay	transport	zone	is	defined	once	per	Edge	VM	node	and	thus	traffic	is	internally	wired	between	two	N-VDS.	If	a	dedicated	Edge	VM	node	is	chosen	for	bridged	traffic,	then	the	overlay	transport	zone	must	be	the	same	for	carrying	the	overlay	traffic	to	bridge	instance,	while	VLAN	transport	zone	is	whatever	needed	for	carrying	bridged	VLANs.							Dedicated	DVPG	group	defined	at	VDS	to	with	load	balance	based	on	source	mac	address	teaming	policy.	This	should	help	distributed	flows	from	various	sources	of	MAC	across	available
uplinks	links							The	bridge	DVPG	must	be	enabled	with	mac-learning.	See	additional	details	on	this	topic	at	Edge	VM	vNIC	Configuration	Requirement	with	Bridging.							For	load	balancing	of	bridge	traffic,	multiple	bridge	instances	are	allowed,	the	bridge	instances	shown	in	picture	are	for	illustrating	the	diversification	of	bridge	placement.	If	deployment	requires	significant	bandwidth	for	bridged	traffic,	either	deploy	additional	pNIC	and	add	a	dedicated	Edge	VM	just	for	the	bridging	as	shown	in	7.4.1.1.3.		The	bridge	placement	per	uplink	as	discussed	in
bare	metal	case	is	not	applicable	here	since	there	is	only	one	uplink	from	the	bridge							Choose	preemptive	vs	non-preemptive	mode	based	on	need	to	consistent	traffic	load	balancing	The	picture	above	shows	multiple	Edge	VM	per	host	to	illustrate	the	symmetry	and	bandwidth	capacity	planning	matching	the	proportional	throughput	from	10/25	Gbps	NICs.	Additional	Edge	VM	can	be	added	assuming	oversubscription	is	afforded	to	build	a	cost-effective	design.	Alternative	is	to	deploy	four	pNICs	and	repeat	the	same	building	block	of	pNIC	mapping	as	shown	in
below	section.		7.4.5.2							Dedicated	Host	for	Edge	VM	Design	with	4	pNICs	The	four	pNICs	host	can	offer	design	choices	that	meet	variety	of	business	and	operational	need	in	which	multiple	Edge	VM	can	be	deployed	in	same	host.	The	design	choices	covering	compute	host	with	four	pNICs	is	already	discussed	in	ESXi-Based	Compute	Hypervisor	with	Four	(or	more)	pNICs.		The	design	choices	with	four	pNICs	hosts	utilized	for	collapsed	management	and	edge	or	collapsed	compute	and	edge	are	discussed	further	in	Collapsed	Management	and	Edge	Resources
Design.	The	below	design	choice	with	four	pNICs	is	optimal	for	having	multiple	Edge	nodes	per	host	without	any	oversubscription.	In	most	cases	(except	host	is	oversubscribed	with	other	VMs	or	resources	like	management,	multi-tenant	edges	etc.),	it	is	not	the	host	CPU	but	the	number	of	pNICs	available	at	the	host	determines	the	number	of	Edge	node	per	host.	One	can	optimize	the	design	by	adopting	four	Edge	VMs	per	host	where	the	oversubscription	is	not	a	concern	but	building	a	high-density	multi-tenant	or	services	design	is	important.	Figure	7‑31:	Two
Edge	VM	with	Dedicated	pNICs	The	four	pNICs	host	design	offers	compelling	possibility	on	offering	variety	of	combination	of	services	and	topology	choices.	Options	of	allocation	of	services	either	in	form	of	dedicated	Edge	VM	per	services	or	shared	within	an	Edge	Node	are	disused	in	separate	section	below	as	it	requires	consideration	of	scale,	availability,	topological	choices	and	multi-tenancy.	7.4.5.3							NSX-T	2.5	Edge	node	VM	connectivity	with	N-VDS	with	2	pNICs	The	Edge	node	VM	connectivity	to	N-VDS	is	required	when	Edge	node	is	connected	with
compute	hypervisor	running	guest	VM	on	overlay	and	host	has	only	2	pNICs.	Additionally,	many	organizations	streamline	connectivity	options	by	selecting	N-VDS	as	a	standard	mode	of	deployment	in	which	Edge	cluster	is	built	with	N-VDS	and	not	VDS.	Another	use	case	for	this	is	single	collapsed	cluster	design	with	2	pNIC	where	all	the	components	of	NSX-T	are	on	N-VDS.		The	case	of	four	pNICs	design	option	(N-VDS	and	VDS)	are	discussed	later	in	this	chapter.	The	Figure	7‑32:	Two	Edge	Node	VM	on	Host	with	N-VDS	shows	two	Edge	VMs	connected	to
host	N-VDS-1	with	2	pNICs.	The	traffic	engineering	principle	remains	the	same	as	Edge	VM	connected	to	VDS	as	show	in	NSX-T	2.5	Edge	node	VM	connectivity	with	VDS	with	2	pNICs.	However,	there	are	some	important	differences.	Figure	7‑32:	Two	Edge	Node	VM	on	Host	with	N-VDS	A	2	pNIC	ESXi	host	providing	connectivity	to	overlay	workloads	would	typically	have	an	N-VDS	installed	with	both	pNICs	connected	to	the	N-VDS	for	redundancy.		All	the	VMkernel	interfaces	on	this	ESXi	host	also	reside	on	N-VDS.		Similarly,	if	the	Edge	node	needs	to	be
hosted	on	this	ESXi	host,	it	needs	to	be	connected	on	the	segments/logical	switches	defined	on	this	N-VDS.	Four	VLAN	backed	segments	or	logical	switches,	“Edge-Mgmt-LS”,	“Trunk-LS1”,	“Trunk-LS2”	and	“Trunk-LS3”	have	been	defined	on	the	host	N-VDS-1,	named	as	“N-VDS-1”	to	provide	connectivity	to	Edge	VMs.		Teaming	policy	defined	on	the	Edge	N-VDS	define	how	traffic	will	exit	out	of	the	Edge	VM.	This	traffic	is	received	by	the	compute	host	N-VDS,	and	the	teaming	policies	defined	at	the	segment	level	will	define	how	this	traffic	exists	the	hypervisor.
Edge	VM	is	configured	to	use	the	same	teaming	policy	as	explained	in	Figure	7‑29:	Single	N-VDS	per	Edge	VM	-	Two	Edge	Node	VM	on	Host.	The	only	difference	is	that	Edge	VM	in	Figure	7‑29:	Single	N-VDS	per	Edge	VM	-	Two	Edge	Node	VM	on	Host	is	connected	to	VDS	DVPG	and	in	this	case,	it	is	connected	to	N-VDS-1	segments.	It	is	also	critical	to	note	that	above	Figure	7‑32:	Two	Edge	Node	VM	on	Host	with	N-VDS	shows	collapsed	cluster	use	case,	the	compute	guest	VM	will	be	attached	to	host	N-VDS.	The	Edge	N-VDS-1	must	be	attached	to	the	same
transport	zones	(VLAN	and	overlay)	as	host	N-VDS	and	thus	the	same	name	is	used	here.	The	VLAN/subnet	for	host	overlay	(TEP)	and	Edge	VMs	N-VDS	overlay	must	be	different	and	routing	between	host	TEP	and	Edge-VM	occurs	at	the	physical	layer,	this	requirement	is	coming	from	protecting	the	host	overlay	from	VM	generating	overlay	traffic.	For	a	design	with	VDS	with	NSX,	the	edge	VM	connectivity	is	exactly	to	the	same	as	VDS.		When	one	enables	VDS	with	NSX	functionality	under	the	same	host	with	2	pNICs,	the	assumption	is	that	application	guest
VM	is	also	cohabit	with	Edge	VMs,	essentially	a	fully	collapsed	cluster	design.	This	design	is	discussed	under	Fully	Collapsed	Single	vSphere	Cluster	with	2	pNICs	Host.	For	the	bridging	services,	one	must	enable	mac-learning	on	N-VDS	which	available	as	natively	as	compared	VDS.	In	addition,	the	VLAN	transport	zone	for	the	bridge	must	be	different	then	the	host	N-VDS,	as	in	this	recommendation	the	dedicated	N-VDS-B	is	used	for	bridging	traffic.	7.4.6					NSX-T	Edge	Resources	Design	The	previous	section	covered	the	Edge	node	wiring	for	both	bare	metal
and	VM.	It	explains	how	overlay,	N-S	peering	and	bridging	connectivity	can	be	achieved	with	choices	of	design	with	number	of	pNICs	and	availability	model	through	the	choice	of	right	teaming	behavior.	This	section	goes	details	into	building	services	(e.g.	ECMP,	FW,	NAT,	LB	and	VPN)	with	either	bare	metal	or	VM.	In	addition,	several	considerations	that	goes	inn	optimizing	right	footprint	of	resources.	There	are	two	major	considerations	in	designing	NSX-T	services	cluster	–	Type	of	services	enabled	and	clustering.	7.4.6.1							Edge	Services	The	guideline	that
governs	the	overall	roadmap	of	developing	services	models.							Service	Level	Agreement	desired	for	each	service.	It	can	be	broad,	bandwidth/throughput	of	each	service,	separation	of	Tier-0	or	Tier-1	to	have	an	independence	operational	control	or	varying	levels	of	services	specific	offering	Not	just	for	bandwidth	but	scale		Configuration	controls	–	overlapping	NAT,	change	control	of	security	vs	NAT	Multi-tenant	–	dedicated	Tier-1	per	tenant	or	services	as	a	tenant	Services	controls	–	failure	behavior	–	only	Tier-0	or	only	Tier-1,	Automation	control	etc.						
ECMP	to	physical	devices	only	run	at	Tier-0,	however	that	does	not	mean	there	is	no	ECMP	from	Tier-1,	there	are	up	to	8	paths	from	Tier-1	to	Tier-0	and	up	to	8	distinct	BGP	peering	from	Tier-0	For	a	given	Edge	node	there	can	only	one	Tier-0	services,	however	one	can	have	multiple	Tier-1	services.	If	Tier-0	is	enabled	with	stateful	services	for	a	workload	like	Kubernetes	(TKGI-PKS	or	OpenShift),	then	for	the	other	workloads	it	may	require	separate	Tier-0	(SLA	considerations)	and	thus	separate	Edge	node.	Multi-tier	Tier-0	model	is	only	possible	with	running
multiple	instances	Edge	node	VM	or	dedicated	bare	metal	per	Tier-0.								As	of	NSX-T	release	2.5	all	edge	services	can	be	deployed	in	either	Tier-0	or	Tier-1.	However,	there	are	exception	for	other	services	VPN	can	run	on	Tier-0	with	BGP	but	not	at	Tier-1,	VPN	at	Tier-1	can	enabled	wit	static	routing	In	line	LB	can	only	be	enable	on	Tier-1.	Use	in-	line	LB	for	preserving	server	pools.	One	arm	LB	can	be	deployed	as	standalone	Tier-1	services.	It	can	be	attached	to	either	Tier-0	or	Tier-1	as	a	VLAN	or	overlay	services	port.	To	optimize	East-West	distributed
routing,	use	one-arm	LB	with	overlay	services	port.	The	one-arm	LB	allows	sperate	life	cycle	of	Edge	node,	from	configuration	changes	to	resizing	without	directly	affecting	existing	Tier-1	gateway	for	other	traffic.							Services	port	(SP)	can	be	attached	as	VLAN	or	overlay.	It	can	be	attached	to	either	Tier-0	or	Tier-1.	Edge	node	must	be	in	active/standby	mode.	Typically,	services	interface	should	be	enabled	on	Tier-1	to	avoid	forcing	the	Tier-0	in	active/standby	mode	and	thus	limiting	ECMP	bandwidth	for	the	entire	NSX-T	domain.	Avoid	using	overlay	services
interface	attaching	to	Tier-0	unless	it	is	used	for	LB	one	arm	mode.	Services	interface	should	not	be	used	for	a	single	tier	topology	with	logical	network	(allows	fully	distributed	routing	for)	typical	small	scale	or	small	size	multi-tenant	design	unless	specific	use	case	requires	it.	Preemptive	vs	Non-preemptive	Mode	with	Active/Standby	Services	Each	stateful	services	can	be	configured	for	either	preemptive	or	non-preemptive	mode.	The	design	choice	is	between	deterministic	balancing	of	services	among	available	resources	(bandwidth	and	CPU)	verses	reducing
disruption	of	services.							The	preemptive	model	allows	making	sure	that,	when	the	system	is	fully	operational,	pool	of	edge	resources	(bandwidth	and	CPU)	always	get	balanced	after	the	restoration	of	host	or	Edge	VM.	However,	preemptive	mode	triggers	the	switchover	of	Edge	VM	running	services,	leading	secondary	disruption	causing	packet	loss.	Operationally	this	may	not	be	acceptable	triggering	intentional	switchover.							The	non-preemptive	model	maximizes	availability	and	is	the	default	mode	for	the	service	deployment.	If	the	active	fails	then
recovers;	it	will	be	in	standby	mode,	it	will	not	trigger	a	re-convergence	that	could	lead	to	unnecessary	packet	loss	(by	preempting	the	currently	active.)	The	drawback	is	that,	after	a	recovered	failure,	the	services	remains	polarized	on	a	host	or	an	edge	cluster.	This	leads	to	an	oversubscription	of	a	host	or	uplink	bandwidth.	If	availability	is	more	important	than	oversubscription	(bandwidth	and	CPU),	this	mode	is	perfectly	acceptable.		Typically,	one	can	restore	the	rebalancing	of	the	services	during	off-peak	or	planned	maintenance	window.	Services	can	be
enabled	either	in	shared	or	dedicated	Edge	node.							Shared	Mode:	Shared	mode	is	the	most	common	deployment	mode	and	a	starting	point	for	building	the	edge	services	model.	Tier-0	or	Tier-1	not	enabled	with	stateful	service,	by	default	runs	in	distributed	mode.	In	shared	mode,	typically	Tier-0	runs	ECMP	service	while	Tier-1	can	runs	stateful	services	(aka	either	active	or	standby	mode	for	that	services).	If	the	Edge	node	fails,	all	the	services	within	that	nodes	fails	(this	is	an	SLA	choice	see	first	bullet).		Below	Figure	7‑33:	Shared	Service	Edge	Node	Cluster
shows	the	flexibility	in	deploying	ECMP	services	along	with	variable	services	model	for	Tier-1.	Tier-0,	represented	by	the	green	node,	running	the	ECMP	service	on	all	four	Edge	nodes	providing	aggregated	multi-Gbps	throughput	for	combined	Tier-1	services.	The	Tier-1	services	are	deployed	based	on	tenants	or	workload	needs.	For	an	example	few	Tier-1	services	(red,	black	and	blue)	are	stateful	over	a	pair	of	Edge	nodes	where	many	services	are	spread	over	four	nodes.	In	other	words,	they	do	not	have	to	be	deployed	on	the	same	nodes	so	the	services	can
scale.	The	stateful	services	have	a	SR	component	running	on	the	Edge	nodes.	The	active	SR	component	is	shown	with	solid	color	Tier-1	router	icon	while	the	standby	on	in	light	faded	icon.	The	Tier-1	routing	function	can	be	entirely	distributed	(aka	stateless	yellow	Tier-1)	and	thus	does	not	have	SR	component	and	thus	they	exist	on	each	Edge	node	by	its	nature	of	distributed	router	component,	below	figure	depiction	of	for	it	is	for	illustration	purpose	only.	Note	that	active/standby	services	all	have	distributed	routing	(DR)	component	running	in	all	Edge	nodes
but	traffic	will	be	always	be	going	through	active	services.	This	services	configuration	can	be	applicable	to	both	bare	metal	and	Edge	VM.	Figure	7‑33:	Shared	Service	Edge	Node	Cluster	The	shared	mode	provides	simplicity	of	allocating	services	in	automated	fashion	as	NSX-T	tracks	which	Edge	node	is	provisioned	with	service	and	reduced	that	Edge	node	as	potential	target	for	next	services	deployment.	However,	each	Edge	node	is	sharing	CPU	and	thus	bandwidth	is	shared	among	services.	In	addition,	if	the	Edge	node	fails,	all	the	services	inside	Edge	nodes
fails	together.	Shared	edge	mode	if	configured	with	preemption	for	the	services,	leads	to	only	service-related	secondary	convergence.	On	the	other	hand,	it	provides	optimized	footprint	of	CPU	capacity	per	host.	If	the	high	dedicated	bandwidth	per	service	and	granular	services	control	is	not	a	priority,	then	use	shared	mode	of	deployment	with	Edge	services.								Dedicated	Mode:	In	this	mode,	Edge	node	is	either	running	ECMP	or	stateful	services	but	not	both.	This	mode	is	important	for	building	scalable	and	performance-based	services	edge	cluster.
Separation	of	services	on	dedicated	Edge	node	allows	distinct	operational	model	for	ECMP	vs	stateful	services.	The	choices	of	scaling	either	ECMP	or	stateful	services	can	be	achieved	via	choice	of	bare	metal	or	multiple	of	Edge	VMs.	Figure	7‑34:	Dedicated	Service	Edge	Node	Cluster	Figure	7‑34:	Dedicated	Service	Edge	Node	Cluster	described	dedicated	modes	per	service,	ECMP	or	stateful	services.	One	can	further	enhanced	configuration	by	deploying	a	specific	service	per	Edge	node,	in	another	word	each	of	the	services	in	EN3	and	EN4	gets	deployed	as
an	independent	Edge	node.	It’s	the	most	flexible	model,	however	not	a	cost-effective	mode	as	each	Edge	node	reserves	the	CPU.	In	this	mode	of	deployment	one	can	choose	preemptive	or	non-preemptive	mode	for	each	service	individually	if	deployed	as	a	dedicated	Edge	VM	per	services.	In	above	figure	if	preemptive	mode	is	configured,	all	the	services	in	EN3	will	experience	secondary	convergence.	However,	if	one	segregate	each	service	to	dedicated	Edge	VM,	one	can	control	which	services	can	be	preemptive	or	non-preemptive.	Thus,	it	is	a	design	choice	of
availability	verses	load-balancing	the	edge	resources.	The	dedicated	edge	node	either	per	service	or	grouped	for	set	of	services	allows	deploying	a	specific	form	factor	Edge	VM,	thus	one	can	distinguish	ECMP	based	Edge	VM	running	larger	form	(8	vCPU)	allowing	dedicated	CPU	for	high	bandwidth	need	of	the	NSX-T	domain.	Similar	design	choices	can	be	adopted	by	allowing	smaller	form	factor	of	Edge	VM	if	the	services	do	not	require	line	rate	bandwidth.	Thus,	if	the	multi-tenant	services	do	not	require	high	bandwidth	one	can	construct	a	very	high	density
per	tenant	Edge	node	services	with	just	2	vCPU	per	edge	node	(e.g.	VPN	services	or	a	LB	deployed	with	DevTest/QA).	The	LB	service	with	container	deployment	is	one	clear	example	where	adequate	planning	of	host	CPU	and	bandwidth	is	required.	A	dedicated	edge	VM	or	cluster	may	be	required	as	each	container	services	can	deploy	LB,	quickly	exhausting	the	underlying	resources.	Another	use	case	to	run	dedicated	services	node	is	multi-tier	Tier-0	or	having	a	Tier-0	level	multi-tenancy	model,	which	is	only	possible	with	running	multiple	instances	of
dedicated	Edge	node	(Tier-0)	for	each	tenant	or	services	and	thus	Edge	VM	deployment	is	the	most	economical	and	flexible	option.	For	the	startup	design	one	should	adopt	Edge	VM	form	factor,	then	later	as	growth	in	bandwidth	or	services	demands,	one	can	lead	to	selective	upgrade	of	Edge	node	VM	to	bare	metal	form.	For	Edge	VM	host	convertibility	to	bare	metal	,	it	must	be	compatible	with	bare	metal	requirement.	If	the	design	choice	is	to	immunize	from	most	of	the	future	capacity	and	predictive	bandwidth	consideration,	by	default	going	with	bare	metal
is	the	right	choice	(either	for	ECMP	or	stateful	services).	This	decision	to	go	with	VM	verses	bare	metal	also	hinges	on	operational	model	of	the	organization	in	which	if	the	network	team	owns	the	lifecycle	and	relatively	want	to	remain	agnostic	to	workload	design	and	adopt	a	cloud	model	by	providing	generalized	capacity	then	bare	metal	is	also	a	right	choice.	7.4.6.2							Edge	Cluster	Edge	cluster	is	logical	grouping	of	Edge	node	(VM	or	BM).	This	clustering	should	not	be	confused	with	vSphere	clustering	concept,	which	is	orthogonal	to	Edge	Cluster.	Edge
cluster	functionality	allows	the	grouping	of	up	to	ten	Edge	nodes	per	cluster.	One	can	have	maximum	16	edge	clusters	totaling	160	Edge	nodes	per	NSX-T	Manager.	The	grouping	of	Edge	nodes	offers	the	benefits	of	high	availability	and	scale	out	performance	for	the	Edge	node	services.	Additionally,	multiple	Edge	clusters	can	be	deployed	within	a	single	NSX-T	Manager,	allowing	for	the	creation	of	pool	of	capacity	that	can	be	dedicated	to	specific	services	(e.g.,	NAT	at	Tier-0	vs.	NAT	at	Tier-1).		Some	rules	apply	while	designing	edge	clusters:							Tier-0	cannot
span	across	cluster,	it	must	confine	to	a	cluster							Active/standby	services	cannot	span	across	cluster	(Tier-0	or	Tier-1)	Thus,	one	can	create	dedicated	cluster	just	for	Tier-0	services	(e.g.	ECMP)	or	Tier-1	services	as	discussed	above							Cluster	striping	can	be	vertical	or	horizontal	and	will	depend	on	mode	of	deployment	of	Edge	node	–	shared	vs	dedicated,	rack-availability,	and	deterministic	edge	cluster	choice.	The	fault	domain	capability	introduced	in	NSX-T	2.5	is	necessary	in	certain	configuration	as	discussed	later							Specific	considerations	apply	for
bare-metal	and	multi-tier	T0	topologies	as	discussed	below							Within	a	single	Edge	cluster,	all	Edge	nodes	should	be	the	same	type	–	either	bare	metal	or	VM.	Edge	node	VMs	of	different	size	can	be	mixed	in	the	same	Edge	cluster,	as	can	bare	metal	Edge	nodes	of	different	performance	levels	based	on	pNICs,	however	those	combination	is	discouraged	but	supported	for	upgrades	and	other	lifecycle	reasons.	A	mixture	of	different	sizes/performance	levels	within	the	same	Edge	cluster	can	have	the	following	effects:	●							With	two	Edge	nodes	hosting	a	Tier-0
configured	in	active/active	mode,	traffic	will	be	spread	evenly.	If	one	Edge	node	is	of	lower	capacity	or	performance,	half	of	the	traffic	may	see	reduced	performance	while	the	other	Edge	node	has	excess	capacity.	●							For	two	Edge	nodes	hosting	a	Tier-0	or	Tier-1	configured	in	active/standby	mode,	only	one	Edge	node	is	processing	the	entire	traffic	load.	If	this	Edge	node	fails,	the	second	Edge	node	will	become	active	but	may	not	be	able	to	meet	production	requirements,	leading	to	slowness	or	dropped	connections.	7.4.6.2.1								Services	Availability
Considerations	with	Edge	Node	VM	The	availability	and	service	placement	for	Edge	node	VM	depends	on	multiple	factors	due	to	nature	of	its	flexibility	as	a	VM.	Design	choices	revolves	around	shared	vs	dedicated	services	deployment,	number	of	Edge	nodes,	in-rack	vs	multi-rack	availability	and	number	of	pNIC	available	in	the	host,	growth,	capacity	and	finally	bandwidth	required	as	a	whole	and	per	services.	In	addition,	restricted	design	consideration	when	Edge	node	VM	coexist	with	another	compute	VMs	in	the	same	host.		In	this	section	the	focus	is	mostly
in	the	context	of	dedicated	edge	cluster	and	availability	with	two	pNICs.	There	are	two	forms	of	availability	to	consider	for	Edge	VM.	First	is	Edge	node	availability	as	a	VM	and	second	is	the	service	that	is	running	inside	Edge	VM.		Typically,	the	Edge	node	VM	availability	falls	into	two	models.	In-rack	verses	multi-rack.	In-rack	availability	implies	minimum	two	hosts	are	available	(for	both	ECMP	and	stateful	services)	and	failure	of	a	host	will	trigger	either	re-deployment	of	Edge	node	to	available	host	or	a	restart	of	the	Edge	VM	depending	on	the	availability	of
the	underlying	hypervisor.	For	multi-rack	availability,	the	recommendation	is	to	keep	availability	model	for	Edge	node	recovery/restoration/redeployment	restricted	to	rack	avoiding	any	physical	fabric	related	requirement	(independent	of	L2	or	L3	fabric).	For	the	simplest	and	most	common	form	of	Edge	deployment	is	shown	in	below	Figure	7‑35:	ECMP	Base	Edge	Node	Cluster	Growth	Pattern,	in	which	entire	NSX-T	domains	is	only	requiring	on	Tier-0	active/active	(ECMP)	services.	In	this	case,	it	is	important	to	remember	that	all	Tier-1	are	distributed	by
default	and	thus	does	not	require	any	specific	consideration.	The	services	enablement	assumes	single	rack	deployment,	with	minimum	two	Tier-0	(ECMP	only	services)	Edge	Nodes.	The	growth	pattern	starts	with	two	hosts	to	avoid	single	point	of	failure,	addition	of	two	additional	Edge	nodes	per	host,	leading	to	four	hosts	with	eight	Edge	nodes	delivering	eight	ECMP	forwarding	paths.	Notice	the	edge	cluster	striping	is	vertical	and	not	much	impact	how	it	is	striped.	If	one	has	requirement	to	support	multi-tenant	with	each	tenant	requiring	dedicated	Tier-0,
one	must	stripe	more	than	one	cluster	and	vertically	for	which	minimum	unit	of	deployment	is	two	hosts	with	two	Edge	nodes	(this	is	not	shown	in	below	diagram,	but	one	can	imagine	that	arrangement	of	ECMP	services)	.	Figure	7‑35:	ECMP	Base	Edge	Node	Cluster	Growth	Pattern	For	the	deployment	that	requires	stateful	services	the	most	common	mode	of	deployment	is	shared	Edge	node	mode	(see	Figure	7‑33:	Shared	Service	Edge	Node	Cluster)	in	which	both	ECMP	Tier-0	services	as	well	stateful	services	at	Tier-1	is	enabled	inside	an	Edge	node,	based
on	per	workload	requirements.	The	Figure	7‑36:	Shared	Services	Edge	Node	Cluster	Growth	Patterns	below	shows	shared	edge	not	for	services	at	Tier-1,	red	Tier-1	is	enabled	with	load-balancer,	while	black	Tier-1	with	NAT.	In	addition,	one	can	enable	multiple	active-standby	services	per	Edge	node,	in	other	word	one	can	optimize	services	such	that	two	services	can	run	on	separate	host	complementing	each	other	(e.g.	on	two	host	configuration	below	one	can	enable	Tier-1	NAT	active	on	host	2	and	standby	on	host	1)	while	in	four	hosts	configuration	dedicated
services	are	enabled	per	host.	For	the	workloads	which	could	have	dedicated	Tier-1	gateways,	are	not	shown	in	the	figure	as	they	are	in	distributed	mode	thus,	they	all	get	ECMP	service	from	Tier-0.	For	the	active-standby	services	consideration,	in	this	case	of	in-rack	deployment	mode	one	must	ensure	the	active-standby	services	instances	be	deployed	in	two	different	host.	This	is	obvious	in	two	edge	nodes	deployed	on	two	hosts	as	shown	below	as	NSX-T	will	deploy	them	in	two	different	host	automatically.	The	growth	pattern	is	just	adding	two	more	hosts	so
on.	Note	here	there	is	only	one	Edge	node	instances	per	host	with	assumption	of	two	10	Gbps	pNICs.	Adding	additional	Edge	node	in	the	same	host	may	oversubscribed	available	bandwidth,	as	one	must	not	forget	that	Edge	node	not	only	runs	ECMP	Tier-0	but	also	serves	other	Tier-1s	that	are	distributed.	Figure	7‑36:	Shared	Services	Edge	Node	Cluster	Growth	Patterns	The	choices	in	adding	additional	Edge	node	per	host	from	above	configuration	is	possible	with	higher	bandwidth	pNIC	deployment	(25/40	Gbps).	In	the	case	four	Edge	node	deployment	on	two
hosts,	it	is	required	to	ensure	active-standby	instances	does	not	end	up	on	Edge	nodes	on	the	same	hosts.		One	can	prevent	this	condition	by	building	a	horizontal	Failure	Domain	as	shown	in	below	Figure	7‑37:	Two	Edge	Nodes	per	Host	–	Shared	Services	Cluster	Growth	Pattern.	Failure	domain	in	below	figures	make	sure	any	stateful	services.			Figure	7‑37:	Two	Edge	Nodes	per	Host	–	Shared	Services	Cluster	Growth	Pattern	An	edge	cluster	design	with	dedicated	Edge	node	per	services	is	shown	in	below	Figure	7‑38:	Dedicated	Services	per	Edge	Nodes
Growth	Pattern.		In	a	dedicated	mode,	Tier-0	is	only	running	ECMP	services	belongs	to	first	edge	cluster	while	Tier-1	running	active-standby	services	on	second	edge	cluster.		Both	of	this	configuration	are	shown	below.	Figure	7‑38:	Dedicated	Services	per	Edge	Nodes	Growth	Pattern	Notice	that	each	cluster	is	striped	vertically	to	make	sure	each	service	gets	deployed	in	separate	host.	This	is	especially	needed	for	active/standby	services.	For	the	ECMP	services	the	vertical	striping	is	needed	when	the	same	host	is	used	for	deploying	stateful	services.	This	is	to
avoid	over	deployment	of	Edge	nods	on	the	same	host	otherwise	the	arrangement	shown	in	Figure	7‑35:	ECMP	Base	Edge	Node	Cluster	Growth	Pattern	is	a	sufficient	configuration.	The	multi-rack	Edge	node	deployment	is	the	best	illustration	of	Failure	Domain	capability	available	in	NSX-T	release	2.5.		It	is	obvious	each	Edge	node	must	be	on	separate	hypervisor	in	a	separate	rack	with	the	deployment	with	two	Edge	nodes.	The	case	described	below	is	the	dedicated	Edge	node	per	service.	The	figure	below	shows	the	growth	pattern	evolving	from	two	to	four	in
tandem	to	each	rack.	In	the	case	of	four	hosts,	assuming	two	Edge	VMs	(one	for	ECMP	and	other	for	services)	per	host	with	two	hosts	in	two	different	rack.	In	that	configuration,	the	ECMP	Edge	node	is	stripped	across	two	racks	with	its	own	Edge	cluster,	the	placement	and	availability	are	not	an	issue	since	each	node	is	capable	of	servicing	equally.		The	Edge	node	where	services	is	enabled	must	use	failure	domain	vertically	striped	as	shown	in	below	figure.	If	the	failure	domains	are	not	used,	the	cluster	configuration	will	mandate	dedicated	Edge	cluster	for
each	service	as	there	is	no	guarantee	that	active-standby	services	will	be	instantiated	in	Edge	node	residing	in	two	different	rack.	This	mandate	minimum	two	edge	clusters	where	each	cluster	consist	of	Edge	node	VM	from	two	racks	providing	rack	availability.	Figure	7‑39:	Dedicated	Services	per	Edge	Nodes	Growth	Pattern	Finally,	the	standby	edge	reallocation	capability	(only	available	to	Tier-1servrices)	allows	a	possibility	of	building	a	multiple	availability	zones	such	that	a	standby	edge	VM	can	be	instantiated	automatically	after	minimum	of	10	minutes	of
failure	detection.	If	the	Edge	node	that	fails	is	running	the	active	logical	router,	the	original	standby	logical	router	becomes	the	active	logical	router	and	a	new	standby	logical	router	is	created.	If	the	Edge	node	that	fails	is	running	the	standby	logical	router,	the	new	standby	logical	router	replaces	it.	There	are	several	other	combinations	of	topologies	are	possible	based	on	the	requirements	of	the	SLA	as	described	in	the	beginning	of	the	section.	Reader	can	build	necessary	models	to	meet	the	business	requirements	from	above	choices.	7.4.6.3							Edge	Node
VM	Physical	Host	Considerations	for	Resiliency	As	discussed	above,	there	are	numerous	technical	solutions	in	place	to	ensure	that	if/when	an	Edge	Node	fails	that	the	services	running	on	that	Edge	Node	are	recovered	and	continued	in	a	reasonable	amount	of	time.	That	said,	there	are	steps	that	can	be	taken	when	designing	the	environment	hosting	the	Edge	Node	VMs	to	limit	the	impact	of	a	failure	event.	An	Edge	Node	VM	inherits	the	resiliency	from	the	underlying	platform	that	is	hosting	it,	it	is	imperative	that	the	hosting	platform	is	configured	in	a	way	to
remove	single	points	of	failures	whenever	possible	such	as:	Redundant	Power	and	UPS	infrastructure	Redundant	Physical	pNICs	Redundant	northbound	switches	Fault	tolerant	storage	platform	for	hosting	the	Edge	Node	VM	In	addition	to	removing	the	single	points	of	failures	from	the	individual	host,	limiting	the	potential	for	cascading	failures	across	a	single	NSX	Edge	Cluster	is	also	a	key	design	consideration.	Some	of	the	important	steps	that	should	be	taken	to	achieve	this	are:	Deployment	of	Edge	Nodes	in	an	NSX	Edge	Cluster	across	multiple	northbound
switches	preventing	a	single	set	of	ToRs	from	taking	down	all	NSX	Edge	Services.	Deployment	of	Edge	Node	VMs	across	multiple	datastores	to	prevent	a	single	datastore	event	(datastore	corruption,	array	availability,	etc.)	from	bringing	down	multiple	Edge	Nodes	at	the	same	time.	Configuration	of	NSX	Failure	domains	(as	described	in	the	previous	section)	where	some	Edge	Nodes	do	share	some	single	points	of	failure	to	ensure	the	availability	of	the	services	in	the	event	of	a	failure.	Deployment	of	additional	NSX	Edge	Node	capacity	to	address	the	recovery
of	NSX	Services	from	a	failed	Edge	Node	to	other	Edge	Nodes.	Proactively	choose	IP	Subnets	for	N/S	Peering	that	can	accommodate	addition	additional	T0	Peering	IPs	in	the	event	that	additional	Edge	Nodes	must	be	brought	online	to	restore	additional	T0	connectivity.			Figure	7‑40:	Single	Edge	Cluster	While	most	of	these	recommendations	can	be	implemented	in	any	environment,	in	Hyper	Converged	Infrastructure	or	VSAN	based	environments	item	number	2	(Deployment	of	Edge	Node	VMs	across	multiple	datastores)	may	become	challenging.	With	VSAN,
it	is	strongly	recommended	that	the	following	configurations	are	made:	Edge	Node	VMs	in	a	single	NSX	Edge	Cluster	should	be	placed	across	a	minimum	of	two	(2)	vSphere	Clusters	and	therefore	two	(2)	or	more	VSAN	datastores.	Each	Edge	Node	VM	hosted	in	a	single	vSphere	Cluster	using	VSAN	would	then	be	configured	as	a	Failure	Domain	in	NSX	to	ensure	placement	of	Active/Standby	Services	across	the	two	datastores.	The	number	of	vSphere	Clusters	used	to	host	the	NSX	Edge	Cluster’s	Edge	Node	VMs	should	provide	sufficient	throughput	for	the	T0
Gateways	running	inside	the	NSX	Edge	Cluster	in	the	event	of	a	failure	of	one	of	the	vSphere	Clusters.	Figure	7‑41:	Single	NSX	Edge,	FTT=2	If	deployment	of	the	NSX	Edge	Cluster	across	multiple	VSAN	datastores	is	not	feasible	then	the	following	configurations	can	be	made	to	minimize	the	potential	of	a	cascading	failure	due	to	the	VSAN	datastore:	At	a	minimum,	the	vSphere	Cluster	should	be	configured	with	an	FTT	setting	of	at	least	2	and	an	FTM	of	Raid1	This	will	dictate	that	for	each	object	associated	with	the	NSX	Edge	Node	VMs,	a	witness,	two	copies
of	the	data	(or	component)	are	available	even	if	two	failures	occur,	allowing	the	objects	to	remain	in	a	healthy	state.	This	will	accommodate	both	a	maintenance	event	and	an	outage	occurring	without	impacting	the	integrity	of	the	data	on	the	datastore.	This	configuration	requires	at	least	five	(5)	hosts	in	the	vSphere	Cluster.	ToR	and	Cabinet	Level	Failures	can	be	accommodated	as	well,	this	can	be	accomplished	in	multiple	ways;	either	through	leveraging	VSAN’s	PFTT	capability	commonly	referred	to	as	Failure	Domains	or	VSAN	Stretched	Clusters	and
leveraging	a	Witness	VM	running	in	a	third	failure	domain	or	by	distributing	the	cluster	horizontally	across	multiple	cabinets	where	no	more	hosts	exist	in	each	Rack	or	Cabinet	than	the	number	of	failures	that	can	be	tolerated	(a	maximum	of	FTT=3	is	supported	by	VSAN).	In	both	of	these	scenarios,	NSX	Edge	Nodes	will	be	spread	out	across	multiple	cabinets	which	will	also	require	IP	mobility	of	the	IP	Addresses	used	by	the	NSX	Edge	Node	for	both	TEP	and	N/S	Connectivity	if	it	is	capable	of	running	T0	Gateways.	When	workload	is	spread	across	multiple
cabinets	or	ToRs,	it	is	also	important	to	potentially	set	Host	affinities	for	workloads	to	better	disburse	the	NSX	Edge	Nodes	across	the	cabinets	and	have	predictability	for	which	one	is	running	where	and	Dis-Affinity	rules	to	minimize	Edge	Node	VMs	running	on	the	same	host	unless	specifically	designed	to	do	so.	It	is	strongly	recommended	that	Hosts,	any	time	they	are	proactively	removed	from	service,	vacate	the	storage	and	repopulate	the	objects	on	the	remaining	hosts	in	the	vSphere	Cluster.	Figure	7‑42:	Single	NSX	Edge	Cluster,	Each	Rack	NSX	Failure
Domain	While	VSAN	Stretched	Cluster	and	other	Metro-Storage	Cluster	technologies	provide	a	very	high	level	of	storage	availability,	NSX	Edge	Nodes	provide	an	“Application	Level”	availability	through	horizontal	scaling	and	various	networking	technologies.	If	a	dedicated	vSphere	Cluster	is	planned	to	host	the	Edge	Node	VMs,	using	two	independent	clusters	that	are	in	diverse	locations	as	opposed	to	a	single	vSphere	Cluster	stretched	across	those	locations	should	seriously	be	considered	to	simplify	the	design.	7.5						Multi-Compute	Workload	Domain	Design
Consideration	NSX-T	enables	an	operational	model	that	supports	compute	domain	diversity,	allowing	for	multiple	vSphere	domains	to	operate	alongside	a	KVM-based	environment.	NSX-T	also	supports	PaaS	compute	(e.g.,	Pivotal	Cloud	Foundry,	Red	Hat	OpenShift)	as	well	as	cloud-based	workload	domains.	This	design	guide	only	covers	ESXi	and	KVM	compute	domains;	container-based	workload	requires	extensive	treatment	of	environmental	specifics	and	has	been	be	covered	in	Reference	Design	Guide	for	PAS	and	PKS	with	VMware	NSX-T	Data	Center.
Figure	7‑43:	Single	Architecture	for	Heterogeneous	Compute	and	Cloud	Native	Application	Framework	offers	capability	of	NSX-T	supporting	of	diverse	compute	workloads	domains.	Figure	7‑43:	Single	Architecture	for	Heterogeneous	Compute	and	Cloud	Native	Application	Framework	Important	factors	for	consideration	include	how	best	to	design	these	workload	domains	as	well	as	how	the	capabilities	and	limitations	of	each	component	influence	the	arrangement	of	NSX-T	resources.	Designing	multi-domain	compute	requires	considerations	of	the	following
key	factors:	●							Type	of	Workloads	○							Enterprise	applications,	QA,	DevOps	○							Regulation	and	compliance	○							Scale	and	performance	○							Security	●							Compute	Domain	Capability	○							Underlying	compute	management	and	hypervisor	capability	○							Inventory	of	objects	and	attributes	controls	○							Lifecycle	management	○							Ecosystem	support	–	applications,	storage,	and	knowledge	○							Networking	capability	of	each	hypervisor	and	domain	●							Availability	and	Agility	○							Cross-domain	mobility	(e.g.,	multi-vCenter	and	KVM)	○						
Hybrid	connectivity	●							Scale	and	Capacity	○							Compute	hypervisor	scale	○							Application	performance	requiring	services	such	as	NAT	or	load	balancer	○							Bandwidth	requirements,	either	as	a	whole	compute	or	per	compute	domains	NSX-T	provides	modularity,	allowing	design	to	scale	based	on	requirements.	Gathering	requirements	is	an	important	part	of	sizing	and	cluster	design	and	must	identify	the	critical	criteria	from	above	set	of	factors.	Design	considerations	for	enabling	NSX-T	vary	with	environmental	specifics:	single	domains	to	multiples;
few	hosts	to	hundreds;	scaling	from	basics	to	compute	domain	maximums.	Regardless	of	these	deployment	size	concerns,	there	are	a	few	baseline	characteristics	of	the	NSX-T	platform	that	need	to	be	understood	and	can	be	applicable	to	any	deployment	models.	7.5.1					Common	Deployment	Consideration	with	NSX-T	Components	Common	deployment	considerations	include:	●							NSX-T	management	components	require	only	VLANs	and	IP	connectivity;	they	can	co-exist	with	any	hypervisor	supported	in	a	specific	release.	NSX-T	manger	node	operation	is
independent	of	vSphere.	It	can	belong	to	any	independent	hypervisor	or	cluster	as	long	as	the	NSX-T	Manager	node	has	consistent	connectivity	and	latency	to	the	NSX-T	domain.	●							For	a	predictable	operational	consistency,	NSX-T	Manager	appliance	and	Edge	node	VM	elements	must	have	their	resources	reserved.	●							An	N-VDS	can	coexist	with	another	N-VDS	VDS,	however	they	cannot	share	interfaces.	●							An	Edge	node	VM	has	an	embedded	N-VDS	which	encapsulates	overlay	traffic	for	the	guest	VMs.	It	does	not	require	a	hypervisor	be	prepared
for	the	NSX-T	overlay	network;	the	only	requirements	are	a	VLAN	and	proper	jumbo	MTU.	This	allows	flexibility	to	deploy	the	Edge	node	VM	in	either	a	dedicated	or	shared	cluster.	●							For	high	availability:	○							Three	NSX-T	Manger	Appliance	(NSX-T	managers	and	controllers)	must	be	on	different	hypervisors	○							Edge	node	VMs	must	be	on	different	hypervisors	to	avoid	single	point	of	failure	●							Understanding	of	design	guidance	for	Edge	node	connectivity	and	availability	as	well	as	services	–	ECMP	and/or	stateful	–	dependencies	and	the	related
Edge	clustering	choices.	Deployment	models	of	NSX-T	components	depend	on	the	following	criteria:	●							Multi-domain	compute	deployment	models	●							Common	platform	deployment	considerations	●							Type	of	hypervisor	used	to	support	management	and	Edge	components	●							Optimization	of	infrastructure	footprint	–	shared	vs.	dedicated	resources	●							Services	scale,	performance,	and	availability	The	following	subsections	cover	three	arrangements	for	components	applicable	to	these	criteria.	The	first	design	model	offers	collapsed
management/Edge	resources	and	compute/Edge	resources.	The	second	one	covers	a	typical	enterprise-scale	design	model	with	dedicated	management	and	Edge	resources.	These	design	modes	offer	an	insight	into	considerations	on	and	value	of	each	approach.	They	do	not	preclude	the	use	other	models	(e.g.,	single	cluster	or	dedicated	purpose	built)	designed	to	address	specific	use	cases.	7.5.2					Collapsed	Management	and	Edge	Resources	Design	This	design	assumes	multiple	compute	clusters	or	domains	serving	independent	workloads.	The	first	example
offers	an	ESXi-only	hypervisor	domain,	while	the	second	presents	a	multi-vendor	environment	with	both	ESXi	and	KVM	hypervisors.	Each	type	of	compute	could	be	in	a	separate	domain	with	a	dedicated	NSX-T	domain;	however,	this	example	presents	a	single	common	NSX-T	domain.	Both	compute	domains	are	managed	as	shown	in	Figure	7‑44:	Collapsed	Management	and	Edge	Resources	Design	–	ESXi	Only	via	a	common	cluster	for	NSX-T	management	and	Edge	resources.	Alternatively,	a	dedicated	Edge	cluster	serving	could	be	used	to	independently
support	the	compute	domain.	The	common	rationales	for	allowing	the	management	and	Edge	resources	are	as	follows:	●							Edge	services	are	deterministic	and	CPU-centric,	requiring	careful	resource	reservation.	Mixing	Edge	and	management	components	is	better	since	management	workload	is	predictable	compared	to	compute	workload.	●							Reduction	in	the	number	of	hosts	required	to	optimizes	the	cost	footprint.	●							Potential	for	shared	management	and	resources	co-existing	in	the	NSX-V	and	NSX-T	domains.	Additional	consideration	such	as
excluding	NSX-T	components	from	DFW	policy	and	SLA	also	apply.	Figure	7‑44:	Collapsed	Management	and	Edge	Resources	Design	–	ESXi	Only	The	first	deployment	model,	shown	in	Figure	7‑44:	Collapsed	Management	and	Edge	Resources	Design	–	ESXi	Only	consists	of	multiple	independent	vCenter	managed	compute	domains.	Multiple	vCenters	can	register	with	the	NSX-T	Manager.	These	vCenter	instances	are	not	restricted	to	a	common	version	and	can	offer	capabilities	not	tied	to	NSX-T.	The	NSX-T	can	provide	consistent	logical	networking	and	security
enforcement	independent	of	the	vCenter	compute	domain.	The	connectivity	is	managed	by	NSX-T	by	managing	independent	N-VDS	on	each	hypervisor,	enabling	the	connectivity	of	workload	between	distinct	vCenter	compute	VMs.	Figure	7‑45:	Collapsed	Management	and	Edge	Resources	Design	–	ESXi	&	KVM	The	second	deployment,	in	Figure	7‑45:	Collapsed	Management	and	Edge	Resources	Design	–	ESXi	&	KVM	shows	two	independent	hypervisor	compute	domains.	The	first	is	ESXi-based,	the	other	two	are	based	on	KVM	hypervisors.	As	before,	each
domain	is	overseen	by	NSX-T	with	common	logical	and	security	enforcement.	7.5.2.1							Collapsed	Management	and	Edge	Cluster	Both	designs	discussed	above	have	the	minimally	recommended	three	ESXi	servers	for	management	cluster;	however,	traditional	vSphere	best	practice	is	to	use	four	ESXi	hosts	to	allow	for	host	maintenance	and	maintain	the	consistent	capacity.	The	following	components	are	shared	in	the	clusters:	●							Management	–	vCenter	and	NSX-T	Manager	Appliance	with	vSphere	HA	enabled	to	protect	NSX-T	Manager	from	host	failure
and	provide	resource	reservation.	NSX-T	Manager	appliances	on	separate	hosts	with	an	anti-affinity	setting	and	resource	reservation.	●							Services	–	The	Edge	cluster	is	shown	with	four	Edge	node	VMs	but	does	not	describe	the	specific	services	present.	While	this	design	assumes	active/standby	Edge	nodes	to	support	the	Gateway	Firewall	and	NAT	services,	it	does	not	preclude	some	other	combinations	of	services.	Where	firewall	or	NAT	services	are	not	required,	typically	active/active	(ECMP)	services	that	support	higher	bandwidth	are	deployed.	A
minimum	of	two	Edge	nodes	is	required	on	each	ESXi	host,	allowing	bandwidth	to	scale	to	multi-10	Gbps	(depending	on	pNIC	speed	and	Performance	Factors	for	NSX-T	Edges	optimization).	Further	expansion	is	possible	by	adding	additional	Edge	node	VMs,	scaling	up	to	a	total	of	eight	Edge	VMs.	For	further	details,	refer	to	the	Edge	Node	and	Services	Design	considerations.	For	multi-10	Gbps	traffic	requirements	or	line	rate	stateful	services,	consider	the	addition	of	a	dedicated	bare	metal	Edge	cluster	for	specific	services	workloads.	Alternatively,	the	design
can	start	with	distributed	firewall	micro-segmentation	and	eventually	move	to	overlay	and	other	Edge	services.	Collapsed	Management	and	Edge	Resources	with	2	pNICs	Compute	node	connectivity	for	ESXi	and	KVM	is	discussed	in	the	Compute	Cluster	Design	(ESXi/KVM)	section.	Figure	7‑46:	Collapsed	Management	and	Edge	on	VDS	with	2	pNICs	describes	the	connectivity	for	shared	management	and	Edge	node	with	2	pNICs	Figure	7‑46:	Collapsed	Management	and	Edge	on	VDS	with	2	pNICs	This	design	assumes	ESXi	hosts	have	two	physical	NICs,
configured	as	follows:	●							Port	“P1”	is	connected	to	“ToR-Left”	and	port	“P2”	to	“ToR-Right”.	●							The	Edge	node	VM	follows	the	exact	guidance	shown	in	NSX-T	2.5	Edge	node	VM	connectivity	with	VDS	with	2	pNICs.	●							VDS	is	configured	with	pNICs	“P1”	and	“P2”.	Related	port	group	assignments	include:	○							“Mgt	PG”	has	“P1”	active	and	“P2”	standby.	Associated	with	this	port	group	are	the	management	IP	address,	management	and	controller	elements,	and	Edge	node	management	vNIC.	○							“vMotion	PG”	has	“P1”	active	and	“P2”	standby.	The
ESXi	VMkernel	vMotion	IP	address	is	associated	with	this	port	group.	○							“Storage	PG”	has	“P1”	active	and	“P2”	standby.	The	ESXi	VMkernel	storage	IP	address	is	associated	with	this	port	group.	○							“Trunk	DVPG-1”	has	“P1”	active	and	“P2”	standby.	○							“Trunk	DVPG-2”	has	“P2”	active	and	“P1”	standby.	Design	Choices	in	Collapsed	Management	and	Edge	Resources	with	4	pNICs	The	four	pNICs	offers	flexibility	in	terms	of	mixing	or	dedicating	NICs	for	specific	resources.	The	principal	motivation	behind	four	pNICs	hosts	is	to	leverage	host	with
denser	CPU/memory	to	build	lesser	number	of	hosts	for	Edge	node,	while	achieving	the	goals	of,	bandwidth	management,	isolation,	regulation/compliance	control	and	mixing	various	clusters	such	as	management	and	edge.		The	design	choices	coming	out	of	requirements	for	the	dedicated	compute	host	with	4	pNICs	are	discussed	in	ESXi-Based	Compute	Hypervisor	with	Four	(or	more)	pNICs.	That	design	choices	are	now	extended	in	building	a	management	and	Edge	node	VM	connectivity	in	which	one	can	have	following	options:	1)					Dedicated	VDS	for	each
Management	and	Edge	node	VM	2)					Dedicated	VDS	for	Management	and	Edge	node	VM	while	Dedicated	N-VDS	for	Compute	3)					Dedicated	N-VDS	for	each	Management	and	Edge	Node	VM	One	can	imaging	many	other	options	of	arranging	the	management	and	Edge	node	VMs.		In	this	section	focus	is	on	option	1	and	2.	While	option	3	is	combined	case	of	combining	ESXi-Based	Compute	Hypervisor	with	two	pNICs		and	NSX-T	2.5	Edge	node	VM	connectivity	with	VDS	with	2	pNICs	however	with	distinction	of	management	components	instead	of	compute
guest	VMs.	Dedicated	VDS	for	each	Management	and	Edge	node	VM	This	design	choice	assumes	management	components	maintains	existing	VDS	for	known	operational	control	while	dedicating	VDS	for	Edge	nod	VM.	The	configuration	option	for	management	VDS	is	shown	below	Figure	7‑47:	Collapsed	Management	and	Edge	VM	on	Separate	VDS	with	4	pNICs	is	left	to	user	preference,	however	one	can	build	a	consistent	teaming	policy	model	with	Load	Balanced	SRC	ID	at	the	VDS	level.	The	Edge	node	VM	connectivity	with	dedicated	VDS	is	exactly	the	same
described	in	NSX-T	2.5	Edge	node	VM	connectivity	with	VDS	with	2	pNICs.	Figure	7‑47:	Collapsed	Management	and	Edge	VM	on	Separate	VDS	with	4	pNICs	Dedicated	VDS	for	Management	and	Edge	node	VM	while	Dedicated	N-VDS	for	Compute		Figure	7‑48:	Fully	Collapsed	Design-	Mgmt.	and	Edge	on	VDS	with	Compute	on	N-VDS	with	4	pNICs	Above	Figure	7‑48:	Fully	Collapsed	Design-	Mgmt.	and	Edge	on	VDS	with	Compute	on	N-VDS	with	4	pNICs	is	an	extension	to	ESXi-Based	Compute	Hypervisor	with	Four	(or	more)	pNICs	in	which	VDS	was	dedicated
for	compute	infrastructure	traffic,	while	in	this	option	it	is	dedicated	for	management	cluster	component	including	vCenters,	NSX-T	management	nodes,	while	other	two	pNICs	is	dedicated	for	compute	guest	VM	necessitating	N-VDS	or	VDS	with	NSX.	This	type	of	configuration	commonly	referred	as	fully	collapsed	cluster	design	in	which	all	resources	are	hosted	in	same	cluster	(minimum	four	hosts	in	case	of	VSAN).	In	this	option	bandwidth	and	operational	control	are	the	main	motivator	for	dedicating	pNICs.	This	design	is	also	a	de-facto	choice	for	VxRail
based	system	deployment	where	first	two	pNICs	are	managed	by	VDS	which	is	controlled	by	VxRail	manager	while	other	two	pNICs	are	dedicated	for	compute	guest	VM	traffic	provisioned	via	NSX-T	Manager.		Alternative	to	above	Figure	7‑48:	Fully	Collapsed	Design-	Mgmt.	and	Edge	on	VDS	with	Compute	on	N-VDS	with	4	pNICs	design	is	shown	below	where	Edge	VM	is	deployed	on	N-VDS.	The	deployment	of	Edge	VM	on	N-VDS	is	discussed	in	NSX-T	2.5	Edge	node	VM	connectivity	with	VDS	with	2	pNICs.	The	advantage	of	design	below	is	that	it	keeps	guest
or	compute	workload	traffic	local	to	N-VDS.	This	comparative	choice	from	Figure	7‑49:	Fully	Collapsed	Design-	Mgmt	on	VDS	while	Edge	with	Compute	on	N-VDS	with	4	pNICs	below	verses	in	Figure	7‑48:	Fully	Collapsed	Design-	Mgmt.	and	Edge	on	VDS	with	Compute	on	N-VDS	with	4	pNICs	above	is	based	on	whether	storage	traffic	on	VDS	needs	to	be	protected	vs	compute	workload	traffic	on	N-VDS.	The	NIOC	profiles	to	manage	specific	type	of	traffic	and	higher	speed	NICs	could	alleviate	this	contention,	and	thus	the	choice	will	move	to	what	is	the
operational	control/consistency	of	managing	VDS	vs	N-VDS.		Figure	7‑49:	Fully	Collapsed	Design-	Mgmt	on	VDS	while	Edge	with	Compute	on	N-VDS	with	4	pNICs	7.5.2.2							Fully	Collapsed	Single	vSphere	Cluster	with	2	pNICs	Host	The	case	of	two	pNICs	design	with	fully	collapsed	cluster	(where	vCenter,	NSX-T	management	&	Edge	appliances	and	workload	VMs	are	in	single	vSphere	cluster)	can	refer	to	NSX-T	2.5	Edge	node	VM	connectivity	with	VDS	with	2	pNICs	for	details	on	how	to	build	such	configuration	with	N-VDS.	Any	configuration	where	Edge
node	is	shared	with	compute	workload	requires	additional	design	considerations	such	as	dedicated	VLANs	for	TEP	for	the	host	and	TEP	for	the	Edge	VM.	The	NSX-T	3.1	removes	this	restriction	of	mandating	the	separate	VLANs	for	host	and	Edge	TEP.	Additional	consideration	for	deployment	with	N-VDS	based	fully	collapsed	cluster	must	be	referred	on	following	URL:	The	similar	design	can	be	enabled	via	VDS	with	NSX	with	significant	reduction	in	migration	and	configuration:	■							Does	not	require	migration	of	VMkernel,	keep	VMkernel	on	VDS	DVPG	■						
Deploy	NSX	Managers	and	Edge	VMs	on	VDS	DVPG	eliminating	the	need	of	pre-deployment	port-configuration	changes	■							Deploy	application	VMs	on	NSX	DVPG	■							Before	NSX-T	3.1,	the	VLAN	for	the	TEP	on	the	HOST	and	the	TEP	on	Edge	VM	must	be	unique	Figure	7‑50:	Fully	Collapsed	Cluster	with	VDS	with	NSX	7.5.3					Collapsed	Compute	and	Edge	Resources	Design	The	motivation	for	co-hosting	Edge	node	VMs	with	compute	guest	VM	in	the	same	host	comes	from	simply	avoiding	the	dedicated	resources	for	the	Edge	VM.	The	below	Figure	7‑51:
Collapsed	Edge	and	Compute	Cluster	depicts	the	Edge	and	compute	VMs	coexist	on	the	same	host.	Figure	7‑51:	Collapsed	Edge	and	Compute	Cluster	The	core	design	consideration	for	co-hosting	Edge	VM	are	as	follows:							Shared	2	x	10	Gbps	design	should	have	no	more	than	one	Edge	VM,	otherwise	either	starve	compute	or	Edge	traffic,	thus	Edge	VM	placement	is	spread-out	leading	to	expanded	failure	domain	and	control	points							Peering	just	got	complicated	if	one	wants	to	build	rack	resiliency,	it	is	now	on	every	rack	if	Edges	are	spread	due	to	the	fact
only	one	Edge	VM	can	be	hosted	with	2	pNICs	design							Resource	reservation	that	is	a	must	for	Edge	VM,	resources	pool	design	got	more	complex	and	anti-affinity	rules	must	be	in	place,	so	two	Edge	VMs	do	not	land	on	the	same	host.							LCM	of	the	host	and	compute	VM	requires	careful	consideration	during	maintenance,	upgrade	and	HW	change							vMotion	the	workload	and	not	the	Edge	node	as	its	not	supported	with	current	release								Shared	services	mode	makes	more	sense	compared	to	dedicated	as	more	hosts	will	be	utilized	for	spreading	the	Edge
Node.	See		NSX-T	Edge	Resources	Design.							Since	Edge	is	not	at	fixed	location,	traffic	pattern	took	the	worst	turn	for	both	direction	–	N-S	and	S-N,	for	this	reason	the	figure	below	explicitly	shows	only	two	racks	configuration	intentionally	resulting	in	Doubling	hops	for	traffic	for	every	flow,	for/from	every	Edge	due	to	ECMP	Oversubscriptions	now	has	twice	the	burden	One	of	traffic	pattern	resulting	from	Edge	node	placement	with	compute	host	is	that	now	every	Edge	VM	can	receive	traffic	from	every	other	host	and	then	it	must	traverse	back	to	physical
fabric	back	to	boarder	leaf	ToRs	(typically	termination	all	the	external	BGP	routing	from	data	center).	This	pattern	repeats	for	every	Edge	VMs	to	every	other	host	for	each	flow.	There	is	multiple	slide	effect	of	this,	first	the	host	carrying	Edge	VM	may	create	hot	spot	in	both	direction	and	indirectly	affecting	applications	VMs	running	only	on	those	hosts.	Secondly,	it’s	resulting	into	double	hop	traffic	pattern	compared	to	centralized	location	where	Edge	VMs	are	connected	in	the	same	rack	as	boarder	leaf.	This	double-hop	traffic	pattern	is	shown	in	below	Figure
7‑52:	Two	Edge	Node	VMs	on	Host	with	N-VDS.	Figure	7‑52:	Two	Edge	Node	VMs	on	Host	with	N-VDS	The	recommendation	is	to	not	place	Edge	VM	with	compute	host	in	a	configuration	beyond	two	racks	of	compute	as	it	will	result	in	suboptimal	performance	and	capacity	planning	for	future	growth.	Either	consider	dedicated	Edge	Nodes	cluster	or	sharing	with	management	with	sufficient	bandwidth	for	Edge	VMs.	In	general,	this	leads	to	common	practice	of	deploying	4	pNICs	host	for	Edge	VMs	regardless	of	where	it’s	hosted,	dedicated	or	shared.	7.5.4				
Dedicated	Management	and	Edge	Resources	Design	This	section	presents	an	enterprise	scale	design	with	dedicated	compute,	management,	and	Edge	clusters.	The	compute	cluster	design	examines	both	ESXi-only	and	KVM-only	options,	each	of	which	contribute	to	requirements	for	the	associated	management	and	Edge	clusters.	The	initial	discussion	focuses	on	recommendations	for	separate	management,	compute,	and	Edge	to	cover	the	following	design	requirements:	●							Diversity	of	hypervisor	and	requirements	as	Common	Deployment	Consideration	with
NSX-T	Components.	●							Multiple	vCenters	managing	distinct	sets	of	virtualized	workloads	●							Compute	workload	characteristics	and	variability	●							Higher	degree	of	on-demand	compute.	●							Compliance	standards	(e.g.,	PCI,	HIPPA,	government)	●							Automation	flexibility	and	controls	●							Multiple	vCenters	managing	production,	development,	and	QA	segments	●							Migration	of	workloads	across	multiple	vCenters	●							Multi-10G	traffic	patterns	for	both	E-W	and	N-S	traffic	●							Multi-tenancy	for	scale,	services,	and	separation	7.5.4.1						
Enterprise	ESXi	Based	Design	The	enterprise	ESXi-hypervisor	based	design	deployment	may	consists	of	multiple	vSphere	domains	and	usually	consists	of	a	dedicated	management	cluster.	The	NSX-T	components	that	reside	in	management	clusters	are	NSX-T	Managers.	The	requirements	for	those	components	are	the	same	as	with	the	collapsed	management/Edge	design	in	the	previous	section	but	are	repeated	to	drive	the	focus	that	management	cluster	is	ESXi	based.	Compute	node	connectivity	for	ESXi	and	KVM	is	discussed	in	section	Compute	Cluster
Design	(ESXi/KVM).	For	the	management	cluster,	the	design	presented	in	Figure	7‑53:	Dedicated	Compute,	Management	and	Edge	Resources	Design	has	a	minimum	recommendation	for	three	ESXi	hosts.	A	standard	vSphere	best	practice	suggests	using	four	ESXi	hosts	to	allow	for	host	maintenance	while	maintaining	consistent	capacity.	The	following	components	are	shared	in	the	clusters:	●							Management	–	vCenter	and	NSX-T	Manager	appliance	with	vSphere	HA	enabled	to	protect	NSX-T	Manager	from	host	failure	as	well	as	provide	resource	reservation.
Figure	7‑53:	Dedicated	Compute,	Management	and	Edge	Resources	Design	The	Edge	cluster	design	takes	into	consideration	workload	type,	flexibility,	and	performance	requirements	based	on	a	simple	ECMP-based	design	including	services	such	as	NAT/FW/LB.	As	discussed	in	Edge	Node	and	Services	Design,	the	design	choices	for	an	Edge	cluster	permit	a	bare	metal	and/or	VM	form	factor.	A	second	design	consideration	is	the	operational	requirements	of	services	deployed	in	active/active	or	active/standby	mode.	The	bare	metal	Edge	form	factor	is
recommended	when	a	workload	requires	multi-10Gbps	connectivity	to	and	from	external	networks,	usually	with	active/active	ECMP	based	services	enabled.	The	availability	model	for	bare	metal	is	described	in	Bare	metal	Edge	Design	and	may	require	more	than	one	Edge	cluster	depending	on	number	of	nodes	required	to	service	the	bandwidth	demand.	Additionally,	typical	enterprise	workloads	may	require	services	such	as	NAT,	firewall,	or	load	balancer	at	high	performance	levels.	In	these	instances,	a	bare	metal	Edge	can	be	considered	with	Tier-0	running
in	active/standby	node.	A	multi-tenant	design	requiring	various	types	of	Tier-0	services	in	different	combinations	is	typically	more	suited	to	a	VM	Edge	node	since	a	given	bare	metal	node	can	enable	only	one	Tier-0	instance.	Figure	7‑54:	Dedicated	Management	and	Edge	Resources	Design	–	ESXi	Only	&	Mix	of	Edge	Nodes	displays	multiple	Edge	clusters	–	one	based	on	the	Edge	node	VM	form	factor	and	other	bare	metal	–	to	help	conceptualize	the	possibility	of	multiple	clusters.	The	use	of	each	type	of	cluster	will	depend	on	the	selection	of	services	and
performance	requirements,	while	as	multi-tenancy	flexibility	will	provide	independent	control	of	resources	configurations.	Figure	7‑54:	Dedicated	Management	and	Edge	Resources	Design	–	ESXi	Only	&	Mix	of	Edge	Nodes	The	VM	Edge	form	factor	is	recommended	for	workloads	that	do	not	require	line	rate	performance.	It	offers	flexibility	of	scaling	both	in	term	of	on-demand	addition	of	bandwidth	as	well	speed	of	service	deployment.	This	form	factor	also	makes	the	lifecycle	of	Edge	services	practical	since	it	runs	on	the	ESXi	hypervisor.	This	form	factor	also
allows	flexible	evolution	of	services	and	elastic	scaling	of	the	number	of	nodes	required	based	on	bandwidth	need.	A	typical	deployment	starts	with	four	hosts,	each	hosting	Edge	VMs,	and	can	scale	up	to	eight	nodes.	The	VM	Edge	Node	section	describes	physical	connectivity	with	a	single	Edge	node	VM	in	the	host,	which	can	be	expanded	to	additional	Edge	node	VMs	per	host.	If	there	are	multiple	Edge	VMs	deployed	in	a	single	host	that	are	used	for	active/standby	services,	the	design	will	require	more	than	one	Edge	Cluster	to	avoid	single	point	of	failure
issues.	Some	use	cases	may	necessitate	multiple	Edge	clusters	comprised	of	sets	of	bare	metal	or	VM	Edge	nodes.	This	may	be	useful	when	Tier-1	requires	a	rich	variety	of	services	but	has	limited	bandwidth	requirements	while	Tier-0	logical	routers	require	the	performance	of	bare	metal.	Another	example	is	separation	of	a	service	provider	environment	at	Tier-0	from	a	deployment	autonomy	model	at	Tier-1.	Such	model	may	be	required	for	a	multi-tenant	solution	in	which	all	Tier-0	logical	routers	are	deployed	in	a	bare	metal	cluster	while	Tier-1	is	deployed
with	Edge	node	VMs	based	on	the	requirement	for	low-bandwidth	services.	This	would	also	provide	complete	control/autonomy	for	provisioning	of	Edge	tenant	services	while	Tier-0	offered	static	resources	(e.g.,	provider	Edge	services).	7.5.4.2							Enterprise	KVM	Design	The	enterprise	KVM	hypervisor-based	design	assumes	all	the	components	–	management,	Edge,	and	compute	–	are	deployed	with	KVM	as	the	base	hypervisor.	It	relies	on	the	KVM-based	hypervisor	to	provide	its	own	availability,	agility	and	redundancy;	thus,	it	does	not	cover	ESXi-centric
capabilities	including	high	availability,	resource	reservation,	or	vMotion.	Compute	node	connectivity	for	ESXI	and	KVM	is	discussed	in	the	section	Compute	Cluster	Design	(ESXi/KVM).	For	the	management	cluster,	this	design	recommends	a	minimum	of	three	KVM	servers.	The	following	components	are	shared	in	the	cluster:	●							Management	–	vCenter	and	NSX-T	Manager	appliance	with	an	appropriate	high	availability	feature	enabled	to	protect	the	NSX-T	Manager	from	host	failure	as	well	as	providing	resource	reservation.	Figure	7‑55:	Dedicated
Management	and	Edge	Resources	Design	–	KVM	Only	With	KVM	as	the	only	hypervisor,	the	bare	metal	Edge	node	is	the	only	applicable	form	factor.	The	bare	metal	cluster	considerations	are	the	same	as	discussed	in	ESXi	design	example.	Workloads	in	the	data	center	are	typically	TCP-based.		Generally,	80%	of	the	traffic	flows	within	the	data	center	are	east/west,	that	is,	communication	between	various	compute	nodes.		The	remaining	20%	is	north/south,	that	is,	communication	in	and	out	of	the	data	center.		The	following	Figure	8‑1:	Data	Center	Traffic
Pattern	with	NSX-T	shows	the	typical	traffic	flow	distribution:	Figure	8‑1:	Data	Center	Traffic	Pattern	with	NSX-T	Because	of	this	underlying	data	center	framework,	this	chapter	primarily	focuses	on	performance	in	terms	of	throughput	for	TCP-based	workloads.		There	are	some	niche	workloads	such	as	NFV,	where	raw	packet	processing	may	be	ideal,	and	the	enhanced	version	of	N-VDS	called	N-VDS	(E)	was	designed	to	address	these	requirements.		Check	out	the	last	part	of	this	section	for	more	details	on	N-VDS	(E).	8.2						Next	Generation	Encapsulation	-
Geneve	Geneve,	a	draft	RFC	in	the	IETF	standard	body	co-authored	by	VMware,	Microsoft,	Red	Hat,	and	Intel,	grew	out	of	a	need	for	an	extensible	protocol	for	network	virtualization.		With	Geneve	the	new	framework	for	overlay/network	virtualization,	understanding	Geneve	is	foundational	to	rest	of	this	chapter	as	the	rest	of	the	optimizations	to	be	discussed	revolve	around	Geneve.	With	its	options	field	length	specified	for	each	packet	within	the	Geneve	header,	Geneve	allows	packing	the	header	with	arbitrary	information	into	each	packet.		This	flexibility
offered	by	Geneve	opens	up	doors	for	new	use	cases,	as	additional	information	may	be	embedded	into	the	packet,	to	help	track	the	packets	path	or	for	in	depth	packet	flow	analysis.		Figure	8‑2:	Geneve	Header	The	above	Figure	8‑2:	Geneve	Header	shows	the	location	of	the	Length	and	Options	fields	within	the	Geneve	header	and	also	shows	the	location	of	TEP	source	and	destination	IP’s.	For	further	insight	into	this	topic,	please	check	out	the	following	blog	post:		8.3						Geneve	Offload	Geneve	Offload	is	simply	TCP	Segmentation	Offload	(TSO)	tuned	to
understand	Geneve	headers.		Since	Geneve	is	not	TCP	traffic,	NIC	cards	need	to	be	aware	of	Geneve	headers	to	perform	TCP	Segmentation	Offload	type	functionality	on	the	Geneve	segments.		In	addition,	guest	VMs	need	to	enable	TSO,	the	default	behavior	with	most	modern	operating	systems.	TCP	Segmentation	Offload	(TSO):	TCP	Segmentation	offload	is	a	well-established	TCP	optimization	scheme	of	relatively	long	duration	that	allows	large	segments	to	pass	through	the	TCP	stack,	instead	of	smaller	packets	as	enforced	by	the	MTU	on	the	physical	fabric.	
8.3.1					(TSO)	applicability	to	Geneve	Overlay	Traffic	In	the	context	of	Geneve,	NICs	are	aware	of	the	Geneve	headers	and	perform	TSO	taking	Geneve	headers	into	consideration.	The	following	Figure	8‑3:	NIC	Based	Geneve	Offload	-	TSO	shows	how	the	VM	would	transmit	64K	segments,	such	as	switching,	routing	and	firewall	and	the	ESX	TCP	Stack,	which	go	through	the	NSX-T	Components	as	64K	segments.		NIC	cards	take	care	of	chopping	the	segments	down	to	MTU-sized	packets	before	moving	them	on	to	the	physical	fabric.	TSO’s	primary	benefit	is	in
reducing	CPU	cycles.		This	benefit	could	help	provide	more	cycles	for	actual	workloads	and	also	consequently	marginally	drive	network	performance	upwards.	Figure	8‑3:	NIC	Based	Geneve	Offload	-	TSO	8.3.2					NIC	Supportability	with	TSO	for	Geneve	Overlay	Traffic	In	cases	where	the	NIC	card	does	not	support	TSO	for	Geneve	overlay	traffic,	TSO	is	done	in	software	by	the	hypervisor	just	before	moving	the	MTU-sized	packets	to	the	NIC	card.		Thus,	NSX-T	components	are	still	able	to	leverage	TSO.	The	following	Figure	8‑4:	Software/CPU	Based	Geneve
Offload	-	TSO	shows	the	process	where	the	hypervisor	divides	the	larger	TSO	segments	to	MTU-sized	packets.	Figure	8‑4:	Software/CPU	Based	Geneve	Offload	-	TSO	8.4						NIC	Card	Geneve	Offload	Capability	8.4.1					VMware’s	IO	Compatibility	Guide	VMware’s	IO	compatibility	guide	is	a	publicly	accessible	online	tool:		And	VMware’s	IO	compatibility	guide	is	the	single	source	of	truth	to	confirm	whether	a	particular	card	is	Geneve-offload	capable.	It	is	important	to	note	availability	of	Geneve	offload	capability	in	the	NIC	helps	decrease	CPU	cycles	and
increase	throughput.		Hence,	deploying	NICs	with	Geneve	compatibility	does	have	marginal	performance	implications.		However,	in	cases	where	the	NIC	does	not	have	Geneve	capability,	ESX	automatically	falls	back	to	software	based	Geneve	offload	mode.		While	NIC-based	offload	is	ideal,	software-based	offload	still	helps	reduce	the	CPU	cycles	spent	for	NSX	components.	The	following	section	show	the	steps	to	check	whether	a	card,	Intel	810s	in	this	case,	supports	Geneve	offload.	Figure	8‑5:	VMware	Compatibility	Guide	for	I/O	Specify	the	Version	of	ESX
Vendor	of	the	NIC	card	Model	if	available	Select	Network	as	the	IO	Device	Type	Select	Geneve	Offload	and	Geneve	Rx	Filters	(more	on	that	in	the	upcoming	section)	in	the	Features	box	Select	Native	Click	“Update	and	View	Results”	Figure	8‑6:	Steps	to	Verify	Compatibility	–	Part	1	From	the	results,	click	on	the	ESX	version	for	the	concerned	card.		In	this	example,	ESXi	version	7.0	for	Intel	E810-C	with	QSFP	ports:	Figure	8‑7:	Steps	to	Verify	Compatibility	-	Part	2	Click	on	the	[+]	symbol	to	expand	and	check	the	features	supported.	Figure	8‑8:	Steps	to	Verify
Compatibility	-	Part	3	Make	sure	the	concerned	driver	actually	has	the	“Geneve-Offload	and	Geneve-Rx	Filters”	as	listed	features.	Figure	8‑9:	Steps	to	Verify	Compatibility	-	Part	4	Follow	the	above	procedure	to	ensure	Geneve	offload	and	Geneve	Rx	Filters	are	available	on	any	NIC	card	you	are	planning	to	deploy	for	use	with	NSX-T.		As	mentioned	earlier,	not	having	Geneve	offload	will	impact	performance	with	higher	CPU	cycles	spent	to	make	up	for	the	lack	of	software	based	Geneve	offload	capabilities.	8.4.2					ESXi-Based	Hypervisor	On	an	ESXi	host	with	a
NIC	card	supporting	Geneve-Offload	in	Hardware	with	the	appropriate	supported	driver,	the	following	commands	can	be	used	to	confirm	Geneve-Offload	is	enabled	on	a	pNIC	–	in	this	case	pNIC	vmnic3:	[Host-1]	vsish	-e	get	/net/pNics/vmnic3/properties	|	grep	".*Activated.*Geneve"				Device	Hardware	Cap	Activated::	0x793c032b	->	VMNET_CAP_SG	VMNET_CAP_IP4_CSUM	VMNET_CAP_HIGH_DMA	VMNET_CAP_TSO	VMNET_CAP_HW_TX_VLAN	VMNET_CAP_HW_RX_VLAN	VMNET_CAP_SG_SPAN_PAGES	VMNET_CAP_IP6_CSUM	VMNET_CAP_TSO6
VMNET_CAP_TSO256k	VMNET_CAP_ENCAP	VMNET_CAP_Geneve_OFFLOAD	VMNET_CAP_IP6_CSUM_EXT_HDRS	VMNET_CAP_TSO6_EXT_HDRS	VMNET_CAP_SCHED	CLI	1	Check	Geneve	Offload	Support	Look	for	the	tag	“VMNET_CAP_Geneve_OFFLOAD”,	highlighted	in	red	above.		This	verbiage	indicates	the	Geneve	Offload	is	activated	on	NIC	card	vmnic3.		If	the	tag	is	missing,	then	it	means	Geneve	Offload	is	not	enabled	because	either	the	NIC	or	its	driver	does	not	support	it.	8.5						Receive	Side	Scaling	(RSS)	and	Rx	Filters	Readers	familiar	with
software	based	VxLAN	deployment	with	NSX-V,	are	likely	familiar	with	the	immense	performance	benefits	of	RSS,	including	improving	the	performance	of	overlay	traffic	by	four	(4)	times.	8.5.1					Benefits	with	RSS	RSS,	another	long-standing	TCP	enhancement,	enables	use	of	multiple	cores	on	the	receive	side	to	process	incoming	traffic.		Without	RSS,	ESX	by	default	will	use	only	one	core	to	process	incoming	traffic.		Utilizing	only	one	core	has	a	huge	impact	on	the	overall	throughput	as	the	receiving	node	then	becomes	the	bottleneck.		RSS	on	the	NIC	creates
multiple	queues	to	process	incoming	traffic	and	efficiently	uses	a	core	for	each	queue,	with	most	NIC	cards	being	able	to	support	at	least	4	queues.		Hence	the	4x	benefit	of	using	RSS.	See	Figure	8‑10:	RSS	for	a	visual	representation	of	how	this	works.	8.5.2					RSS	for	overlay	While	RSS	itself	in	general	is	in	fairly	common	use	today,	there	are	NICs	which	still	may	not	support	RSS	for	overlay.	Hence,	our	recommendation	is	to	confirm	with	the	NIC	vendor	whether	RSS	for	overlay	traffic	is	available	in	hardware,	then	also	confirm	with	the	VMware	Compatibility
IO	Guide	(	whether	there	is	a	RSS-certified	driver.		Figure	8‑10:	RSS	8.5.3					Enabling	RSS	for	Overlay	Every	vendor	has	their	own	unique	mechanism	to	enable	RSS	for	overlay	traffic.		There	are	also	cases	where	the	setting	used	to	change	RSS	is	different	based	on	the	driver	version.		Please	refer	to	the	concerned	vendor	documentation	for	details	on	enabling	RSS	for	specific	NICs.	8.5.4					Checking	whether	RSS	is	enabled	Use	the	“vsish”	command	to	check	whether	RSS	is	enabled.		The	following	example	shows	how	to	check	whether	RSS	(marked	blue)	is
enabled	on	NIC	vmnic	(marked	in	red).	[Host-1]	#	vsish	/>	get	/net/pNics/vmnic0/rxqueues/info	rx	queues	info	{	#	queues	supported:5	#	filters	supported:126	#	active	filters:0	Rx	Queue	features:features:	0x1a0	->	Dynamic	RSS	Dynamic	Preemptible	}	/>	CLI	2	Check	RSS	8.5.5					RSS	and	Rx	Filters	-	Comparison	RSS	uses	the	outer	headers	to	hash	flows	to	different	queues.		Using	outer	headers	of	Geneve	overlay,	especially	between	two	hypervisors,	may	not	be	optimal	as	the	only	varying	parameter	is	the	source	port.		The	following	image	shows	the	fields
used	by	RSS	(circled	in	red)	to	hash	flows	across	various	CPU	cores.		Since	all	the	fields	are	from	the	outer	headers,	there	is	a	little	variability	and	in	the	worst-case	scenarios	the	only	variable	may	be	the	source	port.	Figure	8‑11:	RSS:	Fields	Used	for	Hashing	To	overcome	this	limitation,	the	latest	NICs	(see	compatibility	guide)	support	an	advanced	feature,	known	as	Rx	Filters,	which	looks	at	the	inner	packet	headers	for	hashing	flows	to	different	queues	on	the	receive	side.	In	the	following	Figure	8‑12:	Rx	Filters:	Fields	Used	for	Hashing	fields	used	by	Rx
Filter	are	circled	in	red.	Figure	8‑12:	Rx	Filters:	Fields	Used	for	Hashing	Simply	put,	Rx	Filters	look	at	the	inner	packet	headers	for	queuing	decisions.		As	driven	by	NSX,	the	queuing	decision	itself	is	based	on	flows	and	bandwidth	utilization.		Hence,	Rx	Filters	provide	optimal	queuing	compared	to	RSS,	which	is	akin	to	a	hardware-based	brute	force	method.	8.5.6					Checking	whether	Rx	Filters	are	enabled	Rx	Filters	are	enabled	by	default	on	a	NIC	that	supports	Rx	Filters	in	hardware	and	has	a	driver	to	use	it.		Please	use	the	VMware’s	Compatibility	Guide	for
IO,	discussed	earlier	in	this	chapter,	to	confirm	whether	Rx	Filters	are	available.		In	VCG	for	I/O	page,	select	“Geneve-RxFilter”,	and	make	sure	the	right	driver	is	installed	on	the	ESXi	host.	On	the	ESXi	host,	use	the	“vsish”	command	to	check	whether	Rx	Filters	are	enabled.		The	following	example	shows	how	to	check	whether	the	NIC	vmnic5	(marked	in	red)	has	Rx	Filters	Enabled	for	Geneve	(marked	in	blue)	Check	Whether	Rx	/	Tx	Filters	are	Enabled:	[Host-1]	vsish	/>	cat	/net/pNics/vmnic5/rxqueues/info	rx	queues	info	{				#	queues	supported:8				#	filters
supported:512				#	active	filters:0				#	filters	moved	by	load	balancer:254				#	of	Geneve	OAM	filters:2				RX	filter	classes:Rx	filter	class:	0x1c	->	VLAN_MAC	VXLAN	Geneve	GenericEncap				Rx	Queue	features:features:	0x82	->	Pair	Dynamic	}	/>	CLI	3	Check	RxFilters	Support	8.5.7					RSS	vs	Rx	Filters	for	Edge	VM	In	the	case	of	Edge	VMs,	the	hypervisor	does	not	encapsulate/decapsulate	the	overlay	packets.		Instead,	the	packets	are	sent	along	with	the	overlay	headers	to	the	Edge	VM’s	vNIC	interfaces.		In	this	case,	RSS	is	the	best	mechanism	available	today
to	hash	packets	to	separate	queues.	See	more	on	RSS	for	Edges	in	the	Edge	sections.	8.6						Jumbo	MTU	for	Higher	Throughput	Maximum	Transmission	Unit	(MTU)	denotes	the	maximum	packet	size	that	can	be	sent	on	the	physical	fabric.		When	setting	this	configuration	on	the	ESX	hosts	and	the	physical	fabric,	Geneve	header	size	has	to	be	taken	into	consideration.		Our	general	recommendation	is	to	allow	for	at	least	200	bytes	buffer	for	Geneve	headers	in	order	to	accommodate	the	option	field	for	use	cases	such	as	service-insertion.		As	an	example,	if	the
VM’s	MTU	is	set	to	1500	bytes,	pNIC	and	the	physical	fabric	should	be	set	to	1700	or	more.	See	Figure	8‑13:	MTU	Configuration	on	MTU	Configuration.	Figure	8‑13:	MTU	Configuration	Why	should	you	care	about	MTU	values?	MTU	is	a	key	factor	for	driving	high	throughput,	and	this	is	true	for	any	NIC	which	supports	9K	MTU	also	known	as	jumbo	frame.		The	following	graph	Figure	8‑14:	MTU	and	Throughput	shows	throughput	achieved	with	MTU	set	to	1500	and	8800:	Figure	8‑14:	MTU	and	Throughput	Our	recommendation	for	optimal	throughput	is	to	set
the	underlying	fabric	and	ESX	host’s	pNICs	to	9000	and	the	VM	vNIC	MTU	to	8800.	Notes	for	Figure	8‑14:	MTU	and	Throughput:	The	above	graph	represents	a	single	pair	of	VMs	running	iPerf	with	4	sessions.	For	both	VM	MTU	cases	of	1500	and	8800,	the	MTU	on	the	host	was	9000	with	demonstrated	performance	improvements.		8.6.1					Checking	MTU	on	an	ESXi	host	Use	the	esxcfg-nics	command	to	check	the	MTU:	[Host-1]	esxcfg-nics	-l	|	grep	vmnic5	vmnic5		0000:84:00.0	i40en							Up			40000Mbps		Full			3c:fd:fe:9d:2b:d0	9000			Intel	Corporation
Ethernet	Controller	XL710	for	40GbE	QSFP+	CLI	4	Check	MTU	on	ESXi	Host	For	the	VM,	use	the	commands	specific	to	the	operating	system	for	checking	MTU.		For	example,	“ifconfig”	is	one	of	the	commands	in	Linux	to	check	MTU.	8.7						Single	TEP	vs	Dual	TEP	Dual	TEP	is	another	method	to	increase	the	throughput	of	a	given	host.		Dual	TEP	will	help	achieve	twice	the	throughput	of	single	TEP.		The	following	image	compares	throughput	with	Single	TEP	vs	throughput	with	Dual	TEP	using	Intel®	XL710	NICs	on	servers	running	on	Intel®	Xeon®	Gold	6252
CPU	@	2.10GHz	Figure	8‑15:	Throughput	with	Single	TEP	vs	Dual	TEP	with	Different	MTUs	Note:	Intel®	XL710s	are	PCIe	Gen	3	x8	lane	NICs.		On	x8	lane	NICs,	the	max	throughput	is	limited	to	64Gbps.		To	achieve	the	above	near-line	rate	of	80Gbps,	2	x	Intel®	XL710s	must	be	used.	8.8						NIC	Port	Speed	The	port	speed	of	the	NIC,	in	combination	with	all	the	above	features,	also	has	a	direct	impact	on	the	achieved	throughput.		The	following	graph	shows	throughput	achieved	on	an	Intel®	E810C	100Gbps	NIC	using	8800	MTU.		Thanks	to	its	x16	lane	design,
this	NIC’s	performance	is	close	to	line	rate	at	100Gbps	@	8800	MTU.	Figure	8‑16:	Throughput	with	Intel®	E810-C	100Gbps	NIC	8.9						PCIe	Gen	4	PCIe	Gen	4	doubles	the	bandwidth	when	compared	to	PCIe	Gen3.		Which	translates	into	higher	throughput	even	when	using	standard	1500	MTU.		Following	graph	shows	the	throughput	on	PCIe	Gen	4	Platform	based	on	AMD	EPYCTM	7F72	@	3.2	GHz	–	Single-Socket	using	PCIe	Gen	4	NIC	Mellanox	ConnectX-6	single	port	using	a	standard	1500	MTU.	Figure	8‑17:	Throughput	with	AMD®	EPYCTM	7F72	8.10
	Performance	Factors	for	NSX-T	Edges	8.10.1	Data	Plane	Development	Kit	(DPDK)	Data	Plane	Development	Kit	(DPDK)	is	a	set	of	libraries	and	drivers	to	enable	fast	packet	processing	on	a	wide	variety	of	CPU	architectures	including	x86	platforms.		DPDK	is	applicable	for	both	the	VM	and	bare	metal	Edge	form	factors,	with	the	VM	edge	capable	of	delivering	over	20Gbps	throughput	for	standard	TCP	based	DC	workloads.		Bare	metal	edge	delivers	over	35Gbps	throughput	for	the	same	TCP-based	DC	workloads.	The	bare	metal	Edge	form	factor	also	excels	at
processing	small	packet	sizes	~78	Bytes	at	near	line	on	a	40Gbps	port	such	as	Intel®	XL710,	which	is	useful	in	NFV-style	workloads.		The	following	graph	Figure	8‑18:		Bare	Metal	Edge	Performance	Test	(RFC2544)	with	IXIA	shows	the	performance	of	bare	metal	Edge	with	a	standard	RFC	2544	test	with	IXIA.	Figure	8‑18:		Bare	Metal	Edge	Performance	Test	(RFC2544)	with	IXIA	Note:		For	the	above	test,	the	overlay	lines	in	blue	are	calculated	by	adding	throughput	reported	by	IXIA	and	the	Geneve	Overlay	header	size.	8.10.2	SSL	Offload	VMware	NSX-T	bare
metal	Edges	also	support	SSL	Offload.		This	configuration	helps	in	reducing	the	CPU	cycles	spent	on	SSL	Offload	and	also	has	a	direct	impact	on	the	throughput	achieved.		In	the	following	image,	Intel®	QAT	8960s	are	used	to	show	case	the	throughput	achieved	with	SSL	Offload.	Figure	8‑19:	Throughput	with	SSL	Offload	8.11		Key	Performance	Factors	One	key	to	achieve	better	performance	for	compute,	Edge	VM,	and	bare	metal	Edge	is	to	ensure	having	the	right	set	of	tools.		While	DPDK	plays	a	key	role,	it’s	not	the	only	factor	affecting	performance.	The
combination	of	DPDK	and	other	capabilities	of	NIC	drivers	and	hypervisor	enhancements	will	help	achieve	optimal	performance.	8.11.1	Compute	Node	Performance	Factors	For	compute	clusters,	our	recommendation	is	to	ensure	the	following	two	features	are	available	on	your	NIC	of	choice:			Geneve	Offload	Geneve	Rx	Filters	Geneve	Offload	helps	decrease	the	CPU	usage	by	offloading	the	task	of	dividing	TSO	segments	into	MTU-determined	packets	to	the	NIC	card	while	also	helping	to	increase	throughput.		Geneve	Rx	Filters	help	increase	the	number	of
cores	used	to	process	incoming	traffic,	which	is	in	turn	increases	performance	by	a	factor	of	4x	times	based	on	the	number	of	hardware	queues	available	on	the	NIC.		For	older	cards	which	do	not	support	Geneve	Rx	Filters,	check	whether	they	at	minimum	have	RSS	capability.	The	following	graph	shows	the	throughput	achieved	with	and	without	using	Geneve	Rx	Filters,	10Gbps	vs	near	line	rate:	Figure	8‑20:		Throughput	Improvement	with	Rx	Filters
=====================================================================	Figure	8‑20	Note:		This	test	was	run	with	LRO	enabled,	which	is	software-supported	starting	with	ESX	version	6.5	and	higher	on	the	latest	NICs	which	support	the	Geneve	Rx	Filter.	Thus,	along	with	Rx	Filters,	LRO	contributes	to	the	higher	throughput	depicted	here.	=====================================================================	8.11.2		VM	Edge	Node	Performance	Factors	In	the	case	of	edge
clusters,	DPDK	is	the	key	factor	for	performance.		In	the	case	of	VM	Edge,	RSS-enabled	NICs	are	best	for	optimal	throughput.		RSS	at	pNIC	To	achieve	the	best	throughput	performance,	use	an	RSS-enabled	NIC	on	the	host	running	Edge	VM,	and	ensure	an	appropriate	driver	which	supports	RSS	is	also	being	used.		Use	the	VMware	Compatibility	Guide	for	I/O	(section	8.4.1)	to	confirm	driver	support.	RSS	on	VM	Edge	For	best	results,	enable	RSS	for	Edge	VMs.		Following	is	the	process	to	enable	RSS	on	Edge	VMs:	Shutdown	the	Edge	VM	Find	the	“.vmx”
associated	with	the	Edge	VM	(	Change	the	following	two	parameters,	for	the	Ethernet	devices	in	use,	inside	the	.vmx	file	ethernet3.ctxPerDev	=	"3"	ethernet3.pnicFeatures	=	"4"	Start	the	Edge	VM	Alternatively,	use	the	vSphere	Client	to	make	the	changes:	Right	click	on	the	appropriate	Edge	VM	and	click	“Edit	Settings”:	Figure	8‑21:	Change	VM	RSS	Settings	via	vSphere	Client	–	Part	1	Under	“VM	Options”,	expand	“Advanced”	and	click	on	“Edit	Configuration”:	Figure	8‑22:	Change	VM	RSS	Settings	via	vSphere	Client	–	Part	2	Add	the	two	configuration
parameters	by	clicking	on	“Add	Configuration”	for	each	item	to	add:	Figure	8‑23:	Change	VM	RSS	Settings	via	vSphere	Client	–	Part	3	The	following	graph	Figure	8‑24:	RSS	for	VM	Edge	shows	the	comparison	of	throughput	between	a	NIC	which	supports	RSS	and	a	NIC	which	does	not.		Note:		In	both	cases,	even	where	the	pNIC	doesn’t	support	RSS,	RSS	was	enabled	on	the	VM	Edge:			Figure	8‑24:	RSS	for	VM	Edge	With	an	RSS-enabled	NIC,	a	single	Edge	VM	may	be	tuned	to	drive	over	20Gbps	throughput.		As	the	above	graph	shows,	RSS	may	not	be
required	for	10Gbps	NICs	as	they	can	achieve	close	to	~15	Gbps	throughput	even	without	enabling	RSS.	8.11.3		Bare	Metal	Edge	Node	Performance	Factors	Bare	metal	Edge	has	specific	requirements	dependent	on	the	type	of	NIC	used.		Please	refer	to	the	NSX-T	Installation	Guide		(	for	details	on	currently	supported	cards.	While	VM	and	bare	metal	Edges	leverage	Data	Path	Development	Kit	(DPDK),	they	differ	in	deployment.	While	VM	Edge	does	not	have	restrictions	on	the	physical	NIC	which	can	be	used	because	VMXNET3	provides	DPDK	functionality	for
the	VM	Edge,	bare	metal	Edge	does	have	strict	restrictions	on	the	NICs	which	may	be	used.	(Note	however,	bare	metal	Edge	nodes	do	support	Intel®	QATs	for	SSL	Offload.)	Please	refer	to	the	relevant	hardware	requirements	section	of	the	NSX-T	installation	guide	for	specific	details	on	compatibility.		The	following	link	shows	the	general	system	requirements	for	NSX-T	3.0	components:		From	the	above	page,	for	requirements	specific	to	the	NSX-T	bare	metal	Edge,	click	on	NSX	Edge	Bare	Metal	Requirements.	8.11.4		Summary	of	Performance	–	NSX-T
Components	to	NIC	Features	The	following	table	(Table	8‑1	Summary	of	Performance	Improvements	with	Various	Capabilities)	provides	an	overall	view	and	guidance	on	NSX-T	components	and	NIC	features	per	given	use	case.	For	common	datacenter	applications	and	deployments,	Standard	N-VDS	is	the	recommendation.		Enhanced	Data	Path	is	only	meant	for	NFV	style	workloads	with	fast	packet	processing	requirements.	Table	8‑1	Summary	of	Performance	Improvements	with	Various	Capabilities	Compute	Transport	Nodes	(N-VDS	Standard)	Compute
Transport	Nodes	(“Enhanced	Data	Path”)	ESXi	nodes	with	VM	Edges	Bare	Metal	Edge	Features	that	Matter	Geneve-Offload:	To	save	on	CPU	cycles			Geneve-RxFilters:	To	increase	throughput	by	using	more	cores	and	using	software	based	LRO	RSS	(if	Geneve-RxFilters	does	not	exist):	To	increase	throughput	by	using	more	cores	N-VDS	Enhanced	Data	Path:		For	DPDK-like	capabilities	RSS:	To	leverage	multiple	cores	DPDK:	Poll	mode	driver	with	memory-	related	enhancements	to	help	maximize	packet	processing	speed			QATs:		For	high	encrypt/decrypt
performance	with	SSL-offload	Benefits	High	Throughput	for	typical	TCP-based	DC	Workloads	Maximum	PPS	for	NFV	style	workloads	Maximize	Throughput	for	typical	TPC	based	Workloads	with	Edge	VM	VM	Tuning	+	NIC	with	RSS	Support	Add/Edit	two	parameters	to	the	Edge	VM’s	vmx	file	and	restart	Maximum	PPS	Maximum	Throughput	even	for	small	packet	sizes	Maximum	encrypt/decrypt	performance	with	SSL	Offload	Low	latency	Maximum	Scale	Fast	Failover	8.12		Results	The	following	section	takes	a	look	at	the	results	achievable	under	various
scenarios	with	hardware	designed	for	performance.	First,	here	are	the	test	bed	specs	and	methodology:	Table	8‑2	Specific	Configuration	of	Performance	Results	Compute	Virtual	Machine	Edge	Bare	Metal	Test	Tools	CPU:	Intel(R)	Xeon(R)	Gold	6252	CPU	@	2.10GHz	•									RAM:	192	GB	•									Hyper	Threading:	Enabled	•									MTU:	1700	•									NIC:	XL710	•									NIC	Driver:	i40e	-	1.3.1-18vmw.670.0.0.8169922	•									ESXi	6.7	vCPU:	2	RAM:	2	GB	Network:	VMXNET3	MTU:	1500	CPU:	Intel	®	Xeon	®	E5-2637	v4	3.5Ghz	•									RAM:	256	GB	•									Hyper
Threading:	Enabled	•									MTU:	1700	•									NIC:	XL710	•									NIC	Driver:	In-Box	iPerf	2		(2.0.5)	with	•									4	–	12	VM	Pairs	•									4	Threads	per	VM	Pair	•									30	seconds	per	test	•									Average	over	three	iterations	NSX-T	Components	Segments	T1	Gateways	T0	Gateways	Distributed	Firewall:	Enabled	with	default	rules	NAT:	12	rules	–	one	per	VM	Bridging	Six	Bridge	Backed	Segments	Six	Bridge	Backed	Segments	+	Routing	The	following	graph	shows	in	every	scenario	above,	NSX-T	throughput	performance	stays	consistently	close	to	line	rate	on	an
Intel®	XL710	40Gbps	NIC.	Figure	8‑25:	Throughput	Summary	for	NSX-T	Based	Datacenter	8.13		NFV:	Raw	Packet	Processing	Performance	TCP-based	workloads	are	generally	optimized	for	throughput	and	are	not	sensitive	to	raw	packet	processing	speed.		NFV-style	workloads	are	on	the	opposite	end	where	the	raw	packet	processing	is	key.		For	these	specific	workloads,	NSX-T	provides	an	enhanced	version	of	N-VDS	called	N-VDS	enhanced.	8.13.1		N-VDS	Enhanced	Data	Path	Based	on	the	DPDK-like	features	such	as	Poll	Mode	Driver	(PMD),	CPU	affinity,
and	optimization	and	buffer	management,	N-VDS	Enhanced	caters	to	applications	requiring	high	speed	raw	packet	processing,	for	details	on	the	N-VDS	enhanced	switch	and	its	application,	please	refer	to	the	resource	below:	8.14	Acceleration	with	the	N-VDS	in	Enhanced	Datapath	Mode	8.14.1		Poll	Mode	Driver	One	of	the	recent	key	changes	with	DPDK	is	the	addition	of	Poll	Mode	Driver	(PMD).	With	the	Poll	Mode	Driver,	instead	of	the	NIC	sending	an	interrupt	to	the	CPU	once	a	packet	arrives,	a	core	is	assigned	to	poll	the	NIC	to	check	for	packets.	This
polling	procedures	eliminates	CPU	context	switching,	unavoidable	in	the	traditional	interrupt	mode	of	packet	processing,	resulting	in	higher	packet	processing	performance.	8.14.2		CPU	Affinity	and	Optimization	With	DPDK,	dedicated	cores	are	assigned	to	process	packets.	This	assignment	procedure	ensures	consistent	latency	in	packet	processing	and	enables	instruction	sets	such	SSE,	which	helps	with	floating	point	calculations,	to	be	available	where	needed.	8.14.3		Buffer	Management	Buffer	management	is	optimized	to	represent	the	packets	being
processed	in	simpler	fashion	with	low	footprint,	assisting	with	faster	memory	allocation	and	processing.	Buffer	allocation	is	also	Non-uniform	memory	access	(NUMA)	aware.		NUMA	awareness	reduces	traffic	flows	between	the	NUMA	nodes,	thus	improving	overall	throughput.	Instead	of	requiring	regular	packet	handlers	for	packets,	Enhanced	Datapath	uses	mbuf,	a	library	to	allocate	and	free	buffers	resulting	in	packet-related	info	with	low	overhead.	As	traditional	packet	handlers	have	heavy	overhead	for	initialization,	mbuf	simplifies	packet	descriptors	by
decreasing	the	CPU	overhead	for	packet	initialization.	To	further	support	the	mbuf-based	packet,	VMXNET3	has	also	been	enhanced.	In	addition	to	the	above	DPDK	enhancements,	ESX	TCP	Stack	has	also	been	optimized	with	features	such	as	Flow	Cache.	8.14.4		Flow	Cache	Flow	Cache	is	an	optimization	enhancement	which	helps	reduce	CPU	cycles	spent	on	known	flows.	With	the	start	of	a	new	flow,	Flow	Cache	tables	are	immediately	populated.		This	procedure	enables	follow-up	decisions	for	the	rest	of	packets	within	a	flow	to	be	skipped	if	the	flow	already
exists	in	the	flow	table.	Flow	Cache	uses	two	mechanisms	to	figure	out	fast	path	decisions	for	packets	in	a	flow:	Figure	8‑26:	Flow	Cache	Pipeline	If	the	packets	from	the	same	flow	arrive	consecutively,	the	fast	path	decision	for	that	packet	is	stored	in	memory	and	applied	directly	for	the	rest	of	the	packets	in	that	cluster	of	packets.	If	packets	are	from	different	flows,	the	decision	per	flow	is	saved	to	a	hash	table	and	used	to	decide	the	next	hop	for	packets	in	each	of	the	flows.		Flow	Cache	helps	reduce	CPU	cycles	by	as	much	as	75%,	a	substantial	improvement.
8.14.5		Checking	whether	a	NIC	is	N-VDS	Enhanced	Data	Path	Capable	Use	the	VMware	IO	Compatibility	Guide	(VCG	I/O)	described	in	the	previous	sections	to	find	out	which	cards	are	N-VDS	(E)	capable.		The	feature	to	look	for	is	“N-VDS	Enhanced	Data	Path”	highlighted	in	blue	in	the	following	image:	Figure	8‑27:	VMware	Compatibility	Guide	for	I/O	-	Selection	Step	for	N-VDS	Enhanced	Data	Path	=====================================================================	Note:		N-VDS	Enhanced	Data	Path	cannot	share
the	pNIC	with	N-VDS	-	they	both	need	a	dedicated	pNIC.	=====================================================================	8.15		Benchmarking	Tools	8.15.1		Compute	On	the	compute	side,	our	recommendation	for	testing	the	software	components	is	to	use	a	benchmarking	tool	close	to	the	application	layer.		Application	layer	benchmarking	tools	will	help	take	advantage	of	many	features	and	show	the	true	performance	characteristics	of	the	system.		While	application	benchmarking	tools	are	ideal,	they	may	not	be
very	easy	to	setup	and	run.		In	such	cases,	iPerf	is	a	great	tool	to	quickly	setup	and	check	throughput.		Netperf	is	another	tool	to	help	check	both	throughput	and	latency.	Here	is	a	github	resource	for	an	example	script	to	run	iPerf	on	multiple	VMs	simultaneously	and	summarize	results:	8.16		Edges	8.16.1	VM	Edge	As	VM	Edges	are	designed	for	typical	DC	workloads,	application	layer	tools	are	best	for	testing	VM	Edge	performance.	8.16.2		Bare	Metal	Edge	With	the	Bare	Metal	Edges,	either	application	layer	benchmarking	tools	or	typical	network
benchmarking	and	packet	generation	tools	of	choice,	such	as	Keysight	PathWave	(formerly	IXIA)	or	Spirent	Network	Emulator	may	be	used.		One	of	the	challenges	with	using	a	hardware	benchmarking	tool	is	to	find	one	which	includes	provision	for	Geneve	encap/decap.		Following	is	a	topology	with	two	bare	metal	edges,	each	within	its	own	cluster.		A	segment,	aptly	called	a	crosslink	segment,	connects	them	both	over	overlay.		PathWave	sends	and	receives	only	non-overlay	packets.		However,	the	segment	between	the	two	Edge	clusters	forces	the	packets	to
use	overlay.		Check	the	image	below	for	details.	Figure	8‑28:	Example	Topology	to	Use	Geneve	Overlay	with	Hardware	IXIA	or	Spirent	An	alternative	approach	is	to	use	a	software	tool	such	as	Pktgen	(	.	8.17		Conclusion	To	drive	enhanced	performance,	NSX-T	uses	a	number	of	features	supported	in	hardware.		On	the	compute	side,	these	are:	Geneve	Offload	for	CPU	cycle	reduction	and	marginal	performance	benefits	Geneve	Rx	Filters,	an	intelligent	queuing	mechanism	to	multiply	throughput	RSS	an	older	hardware-based	queuing	mechanism	–	alternative	if
Rx	Filters	are	missing	Jumbo	MTU	an	age-old	trick	to	enable	high	throughput	on	NICs	lacking	above	features	NIC	port	speed	Number	of	NICs	–	single	vs	dual	TEP	PCIe	Gen	3	with	x16	lane	NICs	or	multiple	PCIe	Gen	3	x8	NICs	PCIe	Gen	4	For	compute	workloads	focused	on	high	packet	processing	rate	for	primarily	small	packet	sizes,	Enhanced	Data	Path	Enabled	NICs	provide	a	performance	boost.	For	the	Edges,	if	its	VM	Edges,	then:			NIC	cards	which	support	RSS	and	Enabling	RSS	on	both	the	pNIC	and	the	Edge	VM	NIC	(vNIC)	For	the	Bare	Metal	Edges,
leveraging	optimal	SSL	offload	performance	such	as	Intel®	QAT	8960s	and	deploying	supported	hardware	from	the	VMware	NSX-T	install	guide	will	result	in	performance	gains.	Chapter	6	More	NSX-T	LB	information	can	be	found	in	our	NSX-T	LB	This	appendix	gives	the	actual	API	&	JSON	request	body	for	the	two	examples	describe	in	section	2.3.4	and	2.3.5.			API	Usage	Example	1-	Templatize	and	deploy	3-Tier	Application	Topology	–	API	&	JSON	The	following	API	&	JSON	body	given	an	example	for	deploying	3-Tier	Application	with	Network	isolation	for
each	of	the	Tier,	Micro-segmentation	White-list	policy	for	each	of	the	workload	&	Gateway	services	Load	Balancer,	NAT	&	Gateway	Firewall.	This	API	and	JSON	body	do	following	configuration:	Networking:	Create	Tier-1	Router	and	attach	to	Tier-0	Create	3	Segments	and	attach	to	Tier-1	Gateway	Add	NAT	Stateful	Service	Security:	Create	Groups	App	Tier	Create	Intra-app	DFW	policy	Create	Gateway	Firewall	for	Tier-1	GW	Load	Balancer:	Create	LB	configuration	-	Profile,	VIP,	Pool,	Certificates	You	can	leverage	same	API	&	JSON	with	by	toggling
"marked_for_delete"	flag	to	true	or	false	to	manage	life	cycle	management	of	entire	application	topology.	curl	-X	PATCH	\			\			-H	'authorization:	Basic	YWRtaW46Vk13YXJlIW1ncjE5OTg='	\			-H	'cache-control:	no-cache'	\			-H	'content-type:	application/json'	\			-H	'postman-token:	140fb7c6-f96c-d23d-ddc6-7bd6288d3e90'	\			-d	'{			"resource_type":	"Infra",			"children":	[					{							"resource_type":	"ChildTier1",							"marked_for_delete":	false,							"Tier1":	{									"resource_type":	"Tier1",									"id":	"DEV-tier-1-gw",									"description":	"DEV-tier-1-gw",								
"display_name":	"DEV-tier-1-gw",									"failover_mode":	"NON_PREEMPTIVE",									"tier0_path":"/infra/tier-0s/DC-01-ENVT-01-TIER-0-GW",									"route_advertisement_types":	[											"TIER1_CONNECTED",											"TIER1_STATIC_ROUTES"									],									"children":	[											{																			"resource_type":"ChildLocaleServices",												"LocaleServices":{																"resource_type":"LocaleServices",																"id":		"default",																	"edge_cluster_path":	"/infra/sites/default/enforcement-points/default/edge-clusters/e6d88327-640b-4d33-b0b5-578b1311e7b0"
																}									},											{													"resource_type":	"ChildSegment",													"Segment":	{															"resource_type":	"Segment",															"id":	"DEV-RED-web-segment",															"description":	"DEV-RED-web-segment",															"display_name":	"DEV-RED-web-segment",															"transport_zone_path":	"/infra/sites/default/enforcement-points/default/transport-zones/3a60b876-b912-400d-91b2-bdb0ef602fa0",															"subnets":	[																	{																			"gateway_address":	"10.10.1.1/24"																	}															]													}											},											{													"resource_type":
"ChildSegment",													"Segment":	{															"resource_type":	"Segment",															"id":	"DEV-RED-app-segment",															"description":	"DEV-RED-app-segment",															"display_name":	"DEV-RED-app-segment",															"transport_zone_path":	"/infra/sites/default/enforcement-points/default/transport-zones/3a60b876-b912-400d-91b2-bdb0ef602fa0",															"subnets":	[																	{																			"gateway_address":	"10.20.2.1/24"																	}															]													}											},											{													"resource_type":	"ChildSegment",													"Segment":	{														
"resource_type":	"Segment",															"id":	"DEV-RED-db-segment",															"description":	"DEV-RED-db-segment",															"display_name":	"DEV-RED-db-segment",															"transport_zone_path":	"/infra/sites/default/enforcement-points/default/transport-zones/3a60b876-b912-400d-91b2-bdb0ef602fa0",															"subnets":	[																	{																			"gateway_address":	"10.20.3.1/24"																	}															]													}											},											{														"resource_type":	"ChildPolicyNat",														"PolicyNat":	{															"id":	"USER",														"resource_type":	"PolicyNat",
													"children":	[																	{																				"resource_type":	"ChildPolicyNatRule",																				"PolicyNatRule":	{																							"resource_type":	"PolicyNatRule",																							"id":	"DEV-RED-nat-rule-1",																							"action":	"SNAT",																							"source_network":	"10.10.0.0/23",																							"service":	"",																							"translated_network":	"30.30.30.20",																							"scope":	[],																							"enabled":	true,																							"firewall_match":	"BYPASS",																							"display_name":	"DEV-RED-nat-rule-1",																							"parent_path":	"/infra/tier-1s/DEV-
tier-1-gw/nat/USER"																				}																	}														]												}									}								]							}					},					{							"resource_type":	"ChildDomain",							"marked_for_delete":	false,							"Domain":	{									"id":	"default",									"resource_type":	"Domain",									"description":	"default",									"display_name":	"default",									"marked_for_delete":	false,									"children":	[											{													"resource_type":	"ChildGroup",													"Group":	{															"resource_type":	"Group",															"marked_for_delete":	false,															"description":	"DEV-RED-web-vms",															"display_name":	"DEV-RED-web-
vms",															"id":	"DEV-RED-web-vms",															"expression":	[																	{																			"member_type":	"VirtualMachine",																			"value":	"DEVREDwebvm",																			"key":	"Tag",																			"operator":	"EQUALS",																			"resource_type":	"Condition"																	}															]													}											},											{													"resource_type":	"ChildGroup",													"Group":	{															"resource_type":	"Group",															"marked_for_delete":	false,															"description":	"DEV-RED-app-vms",															"display_name":	"DEV-RED-app-vms",															"id":	"DEV-RED-app-
vms",															"expression":	[																	{																			"member_type":	"VirtualMachine",																			"value":	"DEVREDappvm",																			"key":	"Tag",																			"operator":	"EQUALS",																			"resource_type":	"Condition"																	}															]													}											},											{													"resource_type":	"ChildGroup",													"Group":	{															"resource_type":	"Group",															"description":	"DEV-RED-db-vms",															"display_name":	"DEV-RED-db-vms",															"id":	"DEV-RED-db-vms",															"expression":	[																	{																			"member_type":
"VirtualMachine",																			"value":	"DEVREDdbvm",																			"key":	"Tag",																			"operator":	"EQUALS",																			"resource_type":	"Condition"																	}															]													}											},											{													"resource_type":	"ChildSecurityPolicy",													"marked_for_delete":	false,													"SecurityPolicy":	{															"id":	"DEV-RED-intra-app-policy",															"resource_type":	"SecurityPolicy",															"description":	"communication	map",															"display_name":	"DEV-RED-intra-app-policy",															"rules":	[																	{																			"resource_type":	"Rule",



																		"description":	"Communication	Entry",																			"display_name":	"any-to-DEV-RED-web",																			"sequence_number":	1,																			"source_groups":	[																					"ANY"																			],																			"destination_groups":	[																					"/infra/domains/default/groups/DEV-RED-web-vms"																			],																			"services":	[																					"/infra/services/HTTPS"																			],																			"action":	"ALLOW"																	},																	{																			"resource_type":	"Rule",																			"description":	"Communication	Entry	2",																			"display_name":	"DEV-
RED-web-to-app",																			"sequence_number":	2,																			"source_groups":	[																					"/infra/domains/default/groups/DEV-RED-web-vms"																			],																			"destination_groups":	[																					"/infra/domains/default/groups/DEV-RED-app-vms"																			],																			"services":	[																					"/infra/services/HTTP"																			],																			"action":	"ALLOW"																	},																	{																			"resource_type":	"Rule",																			"description":	"Communication	Entry	3",																			"display_name":	"DEV-RED-app-to-db",																		
"sequence_number":	2,																			"source_groups":	[																					"/infra/domains/default/groups/DEV-RED-app-vms"																			],																			"destination_groups":	[																					"/infra/domains/default/groups/DEV-RED-db-vms"																			],																			"services":	[																					"/infra/services/MySQL"																			],																			"action":	"ALLOW"																	}															]													}											},											{													"resource_type":	"ChildGatewayPolicy",													"marked_for_delete":	false,													"GatewayPolicy":	{															"resource_type":	"GatewayPolicy",															"id":
"DEV-RED-section",															"display_name":	"DEV-RED-section",															"parent_path":	"/infra/domains/default",															"marked_for_delete":	false,															"rules":	[																	{																		"source_groups":	[																									"ANY"																					],																					"destination_groups":	[																									"/infra/domains/default/groups/DEV-RED-web-vms"																					],																					"services":	[																									"/infra/services/HTTPS"																					],																					"profiles":	[																									"ANY"																					],																					"action":	"ALLOW",																					"logged":	false,
																				"scope":	[																									"/infra/tier-1s/DEV-tier-1-gw"																					],																					"disabled":	false,																					"notes":	"",																					"direction":	"IN_OUT",																					"tag":	"",																					"ip_protocol":	"IPV4_IPV6",																					"resource_type":	"Rule",																					"id":	"Any-to-web",																					"display_name":	"Any-to-web"																	},																																	{																		"source_groups":	[																									"ANY"																					],																					"destination_groups":	[																									"/infra/domains/default/groups/DEV-RED-web-vms",																								
"/infra/domains/default/groups/DEV-RED-app-vms",																									"/infra/domains/default/groups/DEV-RED-db-vms"																					],																					"services":	[																									"ANY"																					],																					"profiles":	[																									"ANY"																					],																					"action":	"DROP",																					"logged":	false,																					"scope":	[																									"/infra/tier-1s/DEV-tier-1-gw"																					],																					"disabled":	false,																					"notes":	"",																					"direction":	"IN_OUT",																					"tag":	"",																					"ip_protocol":	"IPV4_IPV6",																				
"resource_type":	"Rule",																					"id":	"DenyAny",																					"display_name":	"DenyAny"																	}																]													}											}								]					}				},					{							"resource_type":	"ChildLBClientSslProfile",							"marked_for_delete":	false,							"LBClientSslProfile":	{									"resource_type":	"LBClientSslProfile",									"id":	"batchSetupClientSslProfile",									"cipher_group_label":	"CUSTOM",									"session_cache_enabled":	true,									"ciphers":	[											"TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256",											"TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384"									],								
"protocols":	[											"TLS_V1_2"									]							}					},					{							"resource_type":	"ChildLBServerSslProfile",							"marked_for_delete":	false,							"LBServerSslProfile":	{									"resource_type":	"LBServerSslProfile",									"id":	"batchSetupServerSslProfile",									"cipher_group_label":	"CUSTOM",									"session_cache_enabled":	true,									"ciphers":	[											"TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256",											"TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384"									],									"protocols":	[											"TLS_V1_2"									]							}					},					{							"resource_type":	"ChildLBAppProfile",
						"marked_for_delete":	false,							"LBAppProfile":	{									"resource_type":	"LBHttpProfile",									"id":	"batchSetupHttpAppProfile",									"x_forwarded_for":	"INSERT"							}					},					{							"resource_type":	"ChildLBMonitorProfile",							"marked_for_delete":	false,							"LBMonitorProfile":	{									"resource_type":	"LBHttpMonitorProfile",									"marked_for_delete":	false,									"id":	"batchSetupHttpMonitor1",									"monitor_port":	80,									"timeout":	5,									"response_status_codes":	[											200,											300									]							}					},					{							"resource_type":
"ChildLBMonitorProfile",							"marked_for_delete":	false,							"LBMonitorProfile":	{									"resource_type":	"LBHttpsMonitorProfile",									"id":	"batchSetupHttpsMonitor1",									"monitor_port":	443,									"timeout":	5,									"response_status_codes":	[											200									]							}					},					{							"resource_type":	"ChildLBService",							"marked_for_delete":	false,							"LBService":	{									"resource_type":	"LBService",									"id":	"DEV-RED-LbService",									"connectivity_path":	"/infra/tier-1s/DEV-tier-1-gw",									"error_log_level":	"DEBUG",									"access_log_enabled":	true							}
				},					{							"resource_type":	"ChildLBVirtualServer",							"marked_for_delete":	false,							"LBVirtualServer":	{									"resource_type":	"LBVirtualServer",									"id":	"DEV-RED-VirtualServer1",									"lb_service_path":	"/infra/lb-services/DEV-RED-LbService",									"ip_address":	"30.10.200.1",									"ports":	[											"443"									],									"pool_path":	"/infra/lb-pools/DEV-RED-web-Pool",									"application_profile_path":	"/infra/lb-app-profiles/batchSetupHttpAppProfile",									"client_ssl_profile_binding":	{											"ssl_profile_path":	"/infra/lb-client-ssl-
profiles/batchSetupClientSslProfile",											"default_certificate_path":	"/infra/certificates/batchSslSignedCertDEV-RED",											"client_auth_ca_paths":	[													"/infra/certificates/batchSslCACertDEV-RED"											],											"certificate_chain_depth":	2									},									"server_ssl_profile_binding":	{											"ssl_profile_path":	"/infra/lb-server-ssl-profiles/batchSetupServerSslProfile",											"server_auth":	"IGNORE",											"client_certificate_path":	"/infra/certificates/batchSslSignedCertDEV-RED",											"server_auth_ca_paths":	[												
"/infra/certificates/batchSslCACertDEV-RED"											],											"certificate_chain_depth":	2									}							}					},					{							"resource_type":	"ChildLBPool",							"marked_for_delete":	false,							"LBPool":	{									"id":	"DEV-RED-web-Pool",									"resource_type":	"LBPool",									"marked_for_delete":	false,									"active_monitor_paths":	[											"/infra/lb-monitor-profiles/batchSetupHttpsMonitor1"									],													"algorithm":	"ROUND_ROBIN",													"member_group":	{																	"group_path":	"/infra/domains/default/groups/DEV-RED-web-vms",																	"ip_revision_filter":
"IPV4"													},													"snat_translation":	{																	"type":	"LBSnatDisabled"													}							}					},					{							"resource_type":	"ChildLBVirtualServer",							"marked_for_delete":	false,							"LBVirtualServer":	{									"resource_type":	"LBVirtualServer",									"id":	"DEV-RED-VirtualServer2",									"lb_service_path":	"/infra/lb-services/DEV-RED-LbService",									"ip_address":	"10.10.200.1",									"ports":	[											"80"									],									"pool_path":	"/infra/lb-pools/DEV-RED-app-Pool",									"application_profile_path":	"/infra/lb-app-profiles/batchSetupHttpAppProfile"							}					},
				{							"resource_type":	"ChildLBPool",							"marked_for_delete":	false,							"LBPool":	{									"id":	"DEV-RED-app-Pool",									"resource_type":	"LBPool",									"marked_for_delete":	false,									"active_monitor_paths":	[											"/infra/lb-monitor-profiles/batchSetupHttpMonitor1"									],													"algorithm":	"ROUND_ROBIN",													"member_group":	{																	"group_path":	"/infra/domains/default/groups/DEV-RED-app-vms",																	"ip_revision_filter":	"IPV4"													},													"snat_translation":	{																	"type":	"LBSnatDisabled"													}							}					},									{
						"resource_type":	"ChildTlsTrustData",							"marked_for_delete":	false,							"TlsTrustData":	{									"resource_type":	"TlsTrustData",									"marked_for_delete":	false,									"id":	"batchSslCACertDEV-RED",									"pem_encoded":	"-----BEGIN	CERTIFICATE-----
-
----END	CERTIFICATE-----"							}					},					{							"resource_type":	"ChildTlsTrustData",							"marked_for_delete":	false,							"TlsTrustData":	{									"resource_type":	"TlsTrustData",									"marked_for_delete":	false,									"id":	"batchSslSignedCertDEV-RED",									"pem_encoded":	"-----BEGIN	CERTIFICATE-----
-
----END	CERTIFICATE----------BEGIN	CERTIFICATE-----
-
----END	CERTIFICATE-----",									"private_key":	"-----BEGIN	RSA	PRIVATE	KEY-----
-
----END	RSA	PRIVATE	KEY-----",									"key_algo":	"RSA"							}					}			]	}'	Back	to	Appendix	2.	API	Usage	Example	2-	Application	Security	Policy	Lifecycle	Management	-	API	&	JSON	Below	example	provides	the	sample	API/JSON	on	how	a	security	admin	can	leverage	declarative	API	to	manage	life	cycle	of	security	configuration	-	grouping	and	micro-segmentation	policy,	for	a	given	3-tier	application.	curl	-X	PATCH	\			\			-H	'authorization:	Basic	YWRtaW46Vk13YXJlIW1ncjE5OTg='	\			-H	'cache-control:	no-cache'	\			-H	'content-type:	application/json'	\			-H	'postman-
token:	e55c1202-8e10-5cf8-b29d-ec86a57fc57c'	\			-d	'{			"resource_type":	"Infra",			"children":	[					{							"resource_type":	"ChildDomain",							"marked_for_delete":	false,							"Domain":	{									"id":	"default",									"resource_type":	"Domain",									"description":	"default",									"display_name":	"default",									"children":	[											{													"resource_type":	"ChildGroup",													"marked_for_delete":	false,													"Group":	{															"resource_type":	"Group",															"description":	"DEV-RED-web-vms",															"display_name":	"DEV-RED-web-vms",															"id":	"DEV-
RED-web-vms",															"expression":	[																	{																			"member_type":	"VirtualMachine",																			"value":	"DEVREDwebvm",																			"key":	"Tag",																			"operator":	"EQUALS",																			"resource_type":	"Condition"																	}															]													}											},											{													"resource_type":	"ChildGroup",													"marked_for_delete":	false,													"Group":	{															"resource_type":	"Group",															"description":	"DEV-RED-app-vms",															"display_name":	"DEV-RED-app-vms",															"id":	"DEV-RED-app-vms",															"expression":	[
																{																			"member_type":	"VirtualMachine",																			"value":	"DEVREDappvm",																			"key":	"Tag",																			"operator":	"EQUALS",																			"resource_type":	"Condition"																	}															]													}											},											{													"resource_type":	"ChildGroup",													"marked_for_delete":	false,													"Group":	{															"resource_type":	"Group",															"description":	"DEV-RED-db-vms",															"display_name":	"DEV-RED-db-vms",															"id":	"DEV-RED-db-vms",															"expression":	[																	{																			"member_type":
"VirtualMachine",																			"value":	"DEVREDdbvm",																			"key":	"Tag",																			"operator":	"EQUALS",																			"resource_type":	"Condition"																	}															]													}											},											{													"resource_type":	"ChildSecurityPolicy",													"marked_for_delete":	false,													"SecurityPolicy":	{															"id":	"DEV-RED-intra-tier-1",															"resource_type":	"SecurityPolicy",															"description":	"communication	map",															"display_name":	"DEV-RED-intra-tier-1",															"category":	"Environment",															"rules":	[																	{
																		"resource_type":	"Rule",																			"description":	"Communication	Entry",																			"display_name":	"DEV-RED-web-to-DEV-RED-web",																			"sequence_number":	1,																			"source_groups":	[																					"/infra/domains/default/groups/DEV-RED-web-vms"																			],																			"destination_groups":	[																					"/infra/domains/default/groups/DEV-RED-web-vms"																			],																			"services":	[																					"Any"																			],																			"action":	"ALLOW",																			"scope":	[																					"/infra/domains/default/groups/DEV-
RED-web-vms"																			]																	},																	{																			"resource_type":	"Rule",																			"description":	"Communication	Entry	2",																			"display_name":	"DEV-RED-intra-tier-2",																			"sequence_number":	2,																			"source_groups":	[																					"/infra/domains/default/groups/DEV-RED-app-vms"																			],																			"destination_groups":	[																					"/infra/domains/default/groups/DEV-RED-app-vms"																			],																			"services":	[																					"ANY"																			],																			"action":	"ALLOW",																			"scope":	[
																				"/infra/domains/default/groups/DEV-RED-app-vms"																			]																	},																	{																			"resource_type":	"Rule",																			"description":	"Communication	Entry	3",																			"display_name":	"DEV-RED-intra-tier-3",																			"sequence_number":	3,																			"source_groups":	[																					"/infra/domains/default/groups/DEV-RED-db-vms"																			],																			"destination_groups":	[																					"/infra/domains/default/groups/DEV-RED-db-vms"																			],																			"services":	[																					"Any"																			],																		
"action":	"ALLOW",																			"scope":	[																					"/infra/domains/default/groups/DEV-RED-db-vms"																			]																	}															]													}											},																					{													"resource_type":	"ChildSecurityPolicy",													"marked_for_delete":	false,													"SecurityPolicy":	{															"id":	"DEV-RED-intra-app-policy",															"resource_type":	"SecurityPolicy",															"description":	"communication	map",															"display_name":	"DEV-RED-intra-app-policy",															"category":	"Application",															"rules":	[																	{																			"resource_type":
"Rule",																			"description":	"Communication	Entry",																			"display_name":	"any-to-DEV-RED-web",																			"sequence_number":	1,																			"source_groups":	[																					"ANY"																			],																			"destination_groups":	[																					"/infra/domains/default/groups/DEV-RED-web-vms"																			],																			"services":	[																					"/infra/services/HTTPS"																			],																			"action":	"ALLOW",																			"scope":	[																					"/infra/domains/default/groups/DEV-RED-web-vms"																			]																	},																	{																		
"resource_type":	"Rule",																			"description":	"Communication	Entry	2",																			"display_name":	"DEV-RED-web-to-app",																			"sequence_number":	2,																			"source_groups":	[																					"/infra/domains/default/groups/DEV-RED-web-vms"																			],																			"destination_groups":	[																					"/infra/domains/default/groups/DEV-RED-app-vms"																			],																			"services":	[																					"/infra/services/HTTP"																			],																			"action":	"ALLOW",																			"scope":	[																					"/infra/domains/default/groups/DEV-RED-
web-vms",																					"/infra/domains/default/groups/DEV-RED-app-vms"																			]																	},																	{																			"resource_type":	"Rule",																			"description":	"Communication	Entry	3",																			"display_name":	"DEV-RED-app-to-db",																			"sequence_number":	3,																			"source_groups":	[																					"/infra/domains/default/groups/DEV-RED-app-vms"																			],																			"destination_groups":	[																					"/infra/domains/default/groups/DEV-RED-db-vms"																			],																			"services":	[																					"/infra/services/MySQL"
																		],																			"action":	"ALLOW",																			"scope":	[																					"/infra/domains/default/groups/DEV-RED-db-vms",																					"/infra/domains/default/groups/DEV-RED-app-vms"																			]																	},																	{																			"resource_type":	"Rule",																			"description":	"Communication	Entry	4",																			"display_name":	"DEV-RED-deny-any",																			"sequence_number":	4,																			"source_groups":	[																					"ANY"																			],																			"destination_groups":	[																					"ANY"																			],																			"services":	[
																				"ANY"																			],																			"action":	"DROP",																			"scope":	[																					"/infra/domains/default/groups/DEV-RED-db-vms",																					"/infra/domains/default/groups/DEV-RED-app-vms",																					"/infra/domains/default/groups/DEV-RED-web-vms"																			]																	}															]													}											}								]					}				}			]	}'	Back	to	Appendix	2.	This	appendix	gives	the	actual	API	&	JSON	request	body	for	the	example	describe	in	Failure	Domain	and	in	Services	Availability	Considerations	with	Edge	Node	VM.	Following	steps	show	an
example	of	how	to	create	a	failure	domain	and	how	to	consume	them.	POST	https:///api/v1/failure-domains/	Copy	the	following	JSON	code	into	the	body	of	the	API	call.	{					"display_name":	"FD-1"	}	Add	Edge	nodes	to	their	failure	domains.	Change	the	“failure_domain_id”	from	system	generated	default	to	newly	created	failure	domain	using	PUT	API.	Retrieve	the	UUID	of	the	Edge	node.	GET	https:///	api/v1/transport-nodes/	Add	an	Edge	node	to	the	failure	domain	created.	PUT	https:///api/v1/	transport-nodes	/	Use	the	following	JSON	code	into	the	body	of	the
API	call.	{	"resource_type":	"FailureDomain",	"description":	"failure	domain	of	rack1",	"display_name":	"FD1",	"id":	"795097bb-fb32-44f1-a074-73445ada5451",	"preferred_active_edge_services":	"true",	"_revision":	0	}	Enable	“Allocation	based	on	Failure	Domain”	on	the	Edge	cluster	level	Retrieve	the	Edge	Cluster	configuration	by	using	the	following	GET	API.	GET	https:///api/v1/edge-clusters/	Copy	the	output	of	the	body.	Enable	the	feature	on	Edge	cluster	level.	Modify	the	following	json	code	into	the	body	of	the	API	call.	PUT	https:///api/v1/edge-clusters/
"allocation_rules":	[FD1],	Validate	by	creating	a	Tier-1	Gateway	A	user	can	also	enforce	that	all	active	Tier-1	SRs	are	placed	in	one	failure	domain.	This	configuration	is	supported	for	Tier-1	gateway	in	preemptive	mode	only.	Set	preference	for	a	failure	domain	using	“preferred_active_edge_services”	PUT	https:///api/v1/failure-domains/	{					"preferred_active_edge_services	":	true	}	By	default,	bridge	will	use	the	first	uplink	in	N-VDS	config.	In	order	to	distribute	bridge	traffic	over	multiple	uplinks	user	need	to	map	named	pinning	policy	to	BridgeEndpoint
(VLAN/Segment),	with	following	steps.			Step1:		Define	Transport	Zone	with	Named	Pinning	Policy.		Step2:		Define	2	Named	teaming	Policy	in	the	Edge	Uplink	Profile,	to	direct	traffic	to	each	of	the	uplinks.	Step	3:		Associate	“uplink_teaming_policy_name”	to	the	BridgeEndpoints	individually	as	shown	below.	Currently	only	API	option	is	available.	Following	example	VLAN	1211	uses	uplink-1	associated	with	TO-TOR-A	teaming	policy	and	VLAN	1221	uses	uplink-2	associated	with	TO-TOR-B	teaming	policy.	Similarly,	one	can	associate	other	BridgeEndpoints	to	the
teaming-policy.	An	API	to	place	specific	bridging	instances	on	an	Uplink	PUT	https://{{nsxmanager}}/api/v1/bridge-endpoints/	with	parameter	"uplink_teaming_policy_name":”"	Please	refer	Example-1:	VLAN	1211	uses	uplink-1	associated	with	TO-TOR-A	teaming	policy	PUT	https://{{nsxmanager}}/api/v1/bridge-endpoints/e9f06b71-323e-4190-a3d9-58a3ca4f114f					{							"vlan":	1211,							"vlan_trunk_spec":	{									"vlan_ranges":	[]							},							"ha_enable":	true,							"bridge_endpoint_profile_id":	"fa7b6bb1-e947-4b5b-9427-8fb11859a8d5",						
"vlan_transport_zone_id":	"d47ac1fd-5baa-448e-8a86-110a75a0528a",							"resource_type":	"BridgeEndpoint",							"id":	"e9f06b71-323e-4190-a3d9-58a3ca4f114f",							"display_name":	"e9f06b71-323e-4190-a3d9-58a3ca4f114f",							"tags":	[],							"uplink_teaming_policy_name":"TO-TOR-A",							"_revision"	:	1					}	Example-2:	VLAN	1221	uses	uplink-2	associated	with	TO-TOR-B	teaming	policy	PUT	https://{{nsxmanager}}/api/v1/bridge-endpoints/f17c1d00-3b5b-409f-a33d-54d3ddef3f9a					{							"vlan":	1221,							"vlan_trunk_spec":	{									"vlan_ranges":	[]							},						
"ha_enable":	true,							"bridge_endpoint_profile_id":	"fa7b6bb1-e947-4b5b-9427-8fb11859a8d5",							"vlan_transport_zone_id":	"d47ac1fd-5baa-448e-8a86-110a75a0528a",							"resource_type":	"BridgeEndpoint",							"id":	"f17c1d00-3b5b-409f-a33d-54d3ddef3f9a",							"display_name":	"f17c1d00-3b5b-409f-a33d-54d3ddef3f9a",							"uplink_teaming_policy_name":	"TO-TOR-B",							"_revision"	:	5					}	Peering	with	Physical	Infrastructure	Routers	This	connectivity	remains	the	same.	See	Deterministic	Peering	with	Physical	Routers.	Before	NSX-T	2.5	-	Bare	Metal
Design	with	2	pNICs	Figure	A5-1	shows	an	Edge	rack	connectivity	for	the	simple	enterprise	design.	Figure	A5-1:	Typical	Enterprise	Bare	Metal	Edge	Node	Rack	The	bare	metal	Edges	“EN1”	and	“EN2”	are	each	configured	with	a	management	interface	attached	to	“P1”	and	an	“N-VDS	1”	with	a	single	uplink,	comprised	of	pNICs	“P2”	and	“P3”	configured	as	a	LAG.	The	interfaces	of	an	individual	bare	metal	Edge	communicate	only	with	a	default	gateway	or	a	routing	peer	on	the	directly	connected	top	of	rack	switch.	As	a	result,	the	uplink-connected	VLANs	are
local	to	a	given	TOR	and	are	not	extended	on	the	inter-switch	link	“ToR-Left”	and	“ToR-Right”.	This	design	utilizes	a	straight	through	LAG	to	a	single	TOR	switch	or	access	device,	offering	the	best	traffic	distribution	possible	across	the	two	pNICs	dedicated	to	the	NSX-T	data	plane	traffic.	The	VLAN	IDs	for	the	management	and	overlay	interfaces	can	be	unique	or	common	between	two	ToR,	it	only	has	local	significance.	However,	subnet	for	those	interfaces	is	unique.	If	common	subnet	is	used	for	management	and	overlay,	then	it	requires	carrying	those	VLANs
between	ToRs	and	routing	north	bound	to	cover	the	case	of	the	all	uplinks	of	given	ToR	fails.	The	VLAN	ID	and	subnet	for	the	external	peering	connectivity	is	unique	on	both	ToR	and	carries	common	best	practices	of	localized	VLAN	for	routing	adjacencies.	If	the	rack	contains	other	compute	hosts	participating	in	the	same	overlay	transport	zone,	it	is	a	common	practice	to	allocate	separate	VLANs	and	subnets	for	infrastructure	traffic	as	well	as	for	overlay	VMkernel	interfaces,	the	reason	for	this	rational	is	that	bare	metal	configuration	is	localized	to	a	ToR	and
operational	consideration	differs	significantly,	The	routing	over	a	straight	through	LAG	is	simple	and	a	supported	choice.	This	should	not	be	confused	with	a	typical	LAG	topology	that	spans	multiple	TOR	switches.	A	particular	Edge	node	shares	its	fate	with	the	TOR	switch	to	which	it	connects,	creating	as	single	point	of	failure.	In	the	design	best	practices,	multiple	Edge	nodes	are	present	so	that	the	failure	of	a	single	node	resulting	from	a	TOR	failure	is	not	a	high	impact	event.	This	is	the	reason	for	the	recommendation	to	use	multiple	TOR	switches	and
multiple	Edge	nodes	with	distinct	connectivity.	This	design	leverages	an	unconventional	dual	attachment	of	a	bare	metal	Edge	to	a	single	ToR	switch.	The	rationale	is	based	on	the	best	strategy	for	even	traffic	distribution	and	overlay	redundancy.	Services	Availability	Considerations	Bare	metal	Edge	Node	An	additional	design	consideration	applies	to	bare	metal	Edge	clusters	with	more	than	two	Edge	nodes.	Figure	A5-2	shows	connectivity	of	Edge	nodes	where	four	Edge	nodes	belong	to	single	Edge	cluster.	In	this	diagram,	two	Edge	nodes	are	connected	to
“ToR-Left”	and	the	other	two	are	connected	to	“ToR-Right”.	This	is	the	only	recommended	configuration	with	two	pNICs	design.	Figure	A5-2:	One	Edge	Cluster	with	4	Edge	Nodes	As	part	of	designating	Edge	node	services,	both	the	role	(i.e.,	active	or	standby)	and	location	must	be	explicitly	defined	and	for	a	given	deployment	of	Tier-0	or	Tier-1,	the	services	must	be	deployed	in	same	cluster.	Without	this	specificity,	the	two	Edge	nodes	chosen	could	be	“EN1”	and	“EN2”,	which	would	result	in	both	active	and	standby	tiers	being	unreachable	in	the	event	of	a
“ToR-Left”	failure.	It	is	highly	recommended	to	deploy	two	separate	Edge	clusters	when	the	number	of	Edge	nodes	is	greater	than	two,	as	shown	in	Figure	A5-3.	Figure	A5-3:	Two	Edge	Clusters	with	2	Edge	Nodes	Each	This	configuration	deploys	the	tiers	in	two	Edge	clusters,	allowing	maximum	availability	under	a	failure	condition,	placing	Tier-0	on	“Edge	Cluster1”	and	Tier-1	on	“Edge	Cluster2”.	Before	NSX-T	2.5	Release	-	Edge	Node	VM	Design	An	Edge	node	can	run	as	a	virtual	machine	on	an	ESXi	hypervisor.	This	form	factor	is	derived	from	the	same
software	code	base	as	the	bare	metal	Edge.	An	N-VDS	switch	is	embedded	inside	the	Edge	node	VM	with	four	fast	path	NICs	and	one	management	vNIC.		The	typical	enterprise	design	with	two	Edge	node	VMs	will	leverage	4	vNICs:	●							One	vNIC	dedicated	to	management	traffic	●							One	vNIC	dedicated	to	overlay	traffic	●							Two	vNICs	dedicated	to	external	traffic	N-VDS	when	deployed	at	the	host	level	offers	multiple	teaming	options,	however	for	N-VDS	inside	the	Edge	node	VM	can	only	carry	one	teaming	mode.	In	most	cases	the	teaming	option	for	N-
VDS	inside	the	Edge	is	using	only	Failover	Order	Teaming.	To	develop	a	deterministic	connectivity,	it	is	necessary	to	have	more	than	one	N-VDS	per	Edge	node.	Since	an	Edge	node	runs	on	ESXi,	it	connects	to	a	VDS(though	N-VDS	in	shared	compute	with	Edge	or	all	things	N-VDS),	providing	flexibility	in	assigning	a	variety	of	teaming	policies	at	VDS	level.	As	a	result,	each	NIC	will	be	mapped	to	a	dedicated	port	group	in	the	ESXi	hypervisor,	offering	maximum	flexibility	in	the	assignment	of	the	different	kind	of	traffic	to	the	host’s	two	physical	NICs.	Figure	A5-
4	shows	an	ESXi	host	with	two	physical	NICs.	Edges	“VM1”	is	hosted	on	this	ESXi	host	leveraging	the	VDS	port	groups,	each	connected	to	both	TOR	switches.	This	configuration	remains	the	same	since	NSX-T	2.0	release	and	remains	valid	for	NSX-T	2.5	release	as	well.	However,	there	have	been	several	enhancements	like	multi-TEP	support	for	Edge	node,	named	teaming	policy	etc.	because	of	which	this	deployment	is	simplified	by	using	one	N-VDS	to	carry	both	overlay	and	external	traffic.	This	is	discussed	in	Single	N-VDS	Based	Configuration	-	Starting	with
NSX-T	2.5	release	and	NSX-T	2.5	Edge	node	VM	connectivity	with	VDS	with	2	pNICs.	In	Figure	A5-4	topology,	four	port	groups	have	been	defined	on	the	VDS	to	connect	the	Edge	VM;	these	are	named	“Mgmt.	PG”	(VLAN	100),	“Transport	PG”	(VLAN	200),	“Ext1	PG”	(VLAN	300),	and	“Ext2	PG”	(VLAN	400).	While	this	example	uses	a	VDS,	it	would	be	the	same	if	a	VSS	were	selected.	Use	of	a	VSS	is	highly	discouraged	due	to	the	support	and	flexibility	benefits	provided	by	the	VDS.	“VDS-Uplink1”	on	the	VDS	is	mapped	to	the	first	pNIC	“P1”	that	connects	to	the
TOR	switch	on	the	left	and	“VDS-Uplink2”	is	mapped	to	the	remaining	pNIC	“P2”,	that	connects	to	the	TOR	switch	on	the	right.	The	Figure	A5-4	also	shows	three	N-VDS,	named	as	“Overlay	N-VDS”,	“Ext	1	N-VDS”,	and	“Ext	2	N-VDS”.	Three	N-VDS	are	used	in	this	design	to	ensure	that	overlay	and	external	traffic	use	different	vNICs	of	Edge	VM.	All	three	N-VDS	use	the	same	teaming	policy	i.e.	Failover	order	with	one	active	uplink	i.e.	Uplink1.	“Uplink1”	on	each	N-VDS	is	mapped	to	use	a	different	vNIC	of	the	Edge	VM.	“Uplink1”	on	overlay	N-VDS	is	mapped
to	use	vNIC2	of	Edge	VM.	“Uplink1”	on	Ext1	N-VDS	is	mapped	to	use	vNIC3	of	Edge	VM.	“Uplink1”	on	Ext2	N-VDS	is	mapped	to	use	vNIC4	of	Edge	VM.	Based	on	this	teaming	policy	for	each	N-VDS,	overlay	traffic	will	be	sent	and	received	on	vNIC2	of	the	Edge	VM.	External	traffic	from	any	VLAN	segment	defined	for	“Ext-1	N-VDS”	will	be	sent	and	received	on	vNIC3	of	the	Edge	VM.	Similarly,	external	traffic	from	any	VLAN	segment	defined	for	“Ext-2	N-VDS”	will	be	sent	and	received	on	vNIC4	of	the	Edge	VM.	Teaming	policy	used	on	the	VDS	port	group
level	defines	how	traffic	from	these	different	N-VDS	on	Edge	node	VM	exits	from	the	hypervisor.	For	instance,	“Mgmt.	PG”	and	“Transport	PG”	are	configured	to	use	active	uplink	as	“VDS-Uplink1”	and	standby	uplink	as	“VDS-Uplink2”.	“Ext1	PG”	(VLAN	300)	is	mapped	to	use	“VDS-Uplink1”.	“Ext2	PG”	(VLAN	400)	is	mapped	to	use	“VDS-Uplink2”.	This	configuration	ensures	that	the	traffic	sent	on	VLAN	300	always	uses	“VDS-Uplink1”	and	is	sent	to	the	left	TOR	switch.	Traffic	sent	on	VLAN	400	uses	“VDS-Uplink2”	and	is	sent	to	the	TOR	switch	on	the	right.
Figure	A5-4:	Edge	Node	VM	installed	leveraging	VDS	port	groups	on	a	2	pNIC	host	In	this	example,	no	VLAN	tags	are	configured	in	either	uplink	profile	for	Edge	node	or	on	VLAN	backed	segments	connecting	Tier-0	gateway	to	TOR.	Hence,	the	VDS	port	groups	are	configured	as	VLAN	port	groups	each	carrying	specific	VLAN.	NSX-T	2.4	Edge	node	VM	connectivity	with	VDS	on	Host	with	2	pNICs	As	discussed	above,	the	Edge	VM	can	be	connected	to	vSS,	VDS	or	N-VDS.	The	preferred	mode	of	connectivity	for	Edge	node	VM	is	VDS	due	to	its	features	set	and
possible	interaction	with	other	components	like	storage	(e.g.	VSAN).	The	physical	connectivity	of	the	ESXi	hypervisor	hosting	the	Edge	VM	nodes	is	similar	to	that	for	compute	hypervisors:	two	pNIC	uplinks,	each	connected	to	a	different	TOR	switch.	Traffic	engineering	over	the	physical	uplinks	depends	on	the	specific	configuration	of	port	groups.	Figure	A5-6	provides	a	detail	of	this	configuration	with	two	edge	VM	nodes.	Figure	A5-6:	2	pNIC	Host	with	two	Edge	Node	VM	Traffic	profiles	for	both	Edge	node	VMs	“EN1”	and	“EN2”	are	configured	as	follows:
●							Management:	“vNIC1”	is	the	management	interface	for	the	Edge	VM.	It	is	connected	to	port	group	“Mgt-PG”	with	a	failover	order	teaming	policy	specifying	“P1”	as	the	active	uplink	and	“P2”	as	standby	●							Overlay:	“vNIC4”	is	the	overlay	interface,	connected	to	port	group	“Transport-PG”	with	a	failover	order	teaming	policy	specifying	“P1”	as	active	and	“P2”	as	standby.	The	Failover	Order	teaming	policy	allows	to	build	a	deterministic	traffic	pattern	of	the	overlay	traffic	carried	by	each	Edge	VM.	The	TEP	for	the	Edge	node	is	created	on	an	“N-VDS	1”
that	has	“vNIC4”	as	its	unique	uplink.	The	N-VDS	teaming	policy	consist	of	both	P1	and	P2	in	its	profile	with	active/standby	configuration.	●							External:	This	configuration	leverages	the	best	practices	of	simplifying	peering	connectivity.	The	VLANs	used	for	peering	are	localized	to	each	TOR	switch,	eliminating	the	spanning	of	VLANs	(i.e.,	no	STP	looped	topology)	and	creating	a	one-to-one	relationship	with	routing	adjacency	to	the	Edge	node	VM.	It	is	important	to	ensure	sure	that	traffic	destined	for	a	particular	TOR	switch	exits	the	hypervisor	on	the
appropriate	uplink	directly	connected	to	that	TOR.	For	this	purpose,	the	design	leverages	two	different	port	groups:	○							“Ext1-PG”	–	“P1”	in	VLAN	“External1-VLAN”	as	its	unique	active	pNIC.	○							“Ext2-PG”	–	“P2”	in	VLAN	“External2-VLAN”	as	its	unique	active	pNIC.	The	Edge	node	VM	will	have	two	N-VDS:	○							“N-VDS	1”	with	“vNIC2”	as	unique	uplink	○							“N-VDS	2”	with	“vNIC3”	as	unique	uplink.	This	configuration	ensures	that	Edge	VM	traffic	sent	on	“N-VDS	1”	can	only	exit	the	hypervisor	on	pNIC	“P1”	and	will	be	tagged	with	an	“External1-
VLAN”	tag.	Similarly,	“N-VDS	2”	can	only	use	“P2”	and	will	receive	an	“External2-VLAN”	tag.	N-VDS	teaming	policy	is	still	Failover	Order,	however	for	each	external	PG	it	differs	from	each	other	and	that	of	overlay	PG.	In	this	case	Ext1-PG	profile	consist	of	only	P1	and	no	standby	is	configured,	while	Ext2-PG	consist	of	P2	and	not	standby.	Note	on	VLAN	tagging:	In	this	design	VLAN	tagging	must	not	be	used	and	disabled	under	uplink	profile	for	the	edge.	If	requirement	is	to	add	services	interface	for	VLAN	routing	or	LB	then	tagging	is	required	in	transport
VLAN,	refer	to	VLAN	TAG	Requirements	in	chapter	4.8.2.2.	Figure	A5-7	Typical	Enterprise	Edge	Node	VM	Physical	View	with	External	Traffic		The	connectivity	options	described	above	Figure	shows	two	hosts	with	single	edge	VM,	however	one	can	applies	the	exact	connectivity	options	depicted	in	Figure	A5-6	with	two	Edge	VM	nodes	per	host.		However,	with	two	edge	nodes	per	hosts	requires	consideration	of	placement	of	active/standby	services.	The	active/standby	Tier-1	cannot	be	placed	in	the	same	host	otherwise	it	will	constitute	a	single	point	of	failure.
This	design	consideration	is	discussed	further	in	NSX-T	Edge	Resources		Design	section.	Dedicated	Host	for	Edge	VM	Design	with	4	pNICs	The	four	pNICs	host	can	offer	design	choices	that	meet	variety	of	business	and	operational	need	in	which	multiple	N-VDS	or	combination	of	N-VDS	and	VDS	can	be	deployed.	The	design	choices	covering	compute	host	with	four	pNICs	is	discussed	in	section	7.3.3.		The	design	choices	with	four	pNICs	hosts	utilized	for	collapsed	management	and	edge	or	collapsed	compute	and	edge	are	discussed	further	in	section	7.5.	This
part	focuses	on	dedicated	host	for	Edge	node	with	four	pNICs.	It	offers	greater	flexibility	in	terms	of	separation	of	traffic	and	optimal	bandwidth	allocation	per	Edge	nodes.		With	four	pNICs	the	bandwidth	offered	per	host	for	both	N-S	and	overlay	is	symmetric	as	shown	in	Figure	A5-7	where	there	is	dedicated	overlay	pNIC	for	each	Edge	VM	node.	Thus,	total	bandwidth	passing	through	the	host	from	N-S	to	overlay	is	equal.		Figure	A5-7:	Four	pNICs	Edge	Dedicated	Host	with	two	Edge	nodes		The	physical	connectivity	remains	exactly	same	as	two	pNICs	option
as	described	in	section	7.4.2.1	except	for	following:	Overlay	Traffic	is	allocated	a	dedicated	pNIC	Two	types	of	VDS	teaming	configuration	possible.	The	first	option	is	depicted	in	Figure	A5-7	in	which	each	Edge	node	VM	gets	a	dedicated	transport	PG.	Each	one	is	configured	with	“Failover	Order”	teaming	under	VDS.		This	way	the	overlay	traffic	from	each	Edge	VM	will	always	go	to	designated	pNIC.		The	second	option	(not	shown	in	figure)	uses	single	transport	PG	under	VDS,	in	which	the	teaming	type	must	be	“Source	ID”	under	VDS.	It	saves	the
configuration	overhead	but	now	the	Edge	node	traffic	is	non-deterministic,	thus	little	harder	to	know	the	exact	pNIC	over	which	the	overlay	traffic	is	going	at	a	given	moment.	The	above	design	choice	is	optimal	for	having	multiple	Edge	nodes	per	host.	In	most	cases	(except	host	is	oversubscribed	with	other	VMs	or	resources	like	management,	multi-tenant	edges	etc.),	it	is	not	the	host	CPU	but	the	number	of	pNICs	available	at	the	host	determines	the	number	of	Edge	node	per	host.	One	can	optimize	following	design	by	adopting	four	Edge	VMs	per	host	where
the	oversubscription	is	not	a	concern	but	building	a	high-density	multi-tenant	or	services	design	is	important.	The	four	pNICs	host	design	offers	compelling	possibility	on	offering	variety	of	combination	of	services	and	topology	choices.	Options	of	allocation	of	services	either	in	form	of	dedicated	Edge	VM	per	services	or	shared	within	an	Edge	Node	are	disused	in	separate	section	below	as	it	requires	consideration	of	scale,	availability,	topological	choices	and	multi-tenancy.	Filter	Tags	Networking	Security	NSX	Document	Benchmark	Deep	Dive	Design	Guide
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